
Hodgkin-Huxley? No, Parakh-Varanasi.

Pranav Parakh, Varun Varanasi

December 15, 2022

Abstract

Brain function has been one of physiology’s largest mysteries. Over the years scientists have
understood the role of electricity in neural signaling, neuron firing mechanisms, and even neural
pathways, but the emergent phenomena of memory and consciousness still remain open questions.
The goal of this project is to provide an analytic framework to understand neural pathways. Our
work can be understood in two parts: exploration of neuron function and an exploration of neuron
pathways. The first phase of our project focuses on analyzing the Hodgkin-Huxley mathematical
model for neurons. We implement the Hodgkin-Huxley model and study the effect of various model
parameters on neuron function. We pay specific attention to complex and non-linear behavior. The
second phase of this project can be seen as an application of of Hodgkin-Huxley neurons to neural
pathways in the brain. In this portion we construct neural networks of Hodgkin-Huxley neurons
and study the signal processing abilities of these neural circuits. Our findings indicate that our
Hodgkin-Huxely neural net model, the Parakh-Varanasi model, is capabale of preserving certain
signal characteristics through the network. Furthermore, we provide a basic proof of concept that
variation of certain parameters allow us to control Parakh-Varanasi outputs. Finally, we conclude
our project outlining a future project proving the signal re-producing capabilities of these Hodgkin-
Huxley network models. We hope that this analytic frame work work plays a part in uncovering
the role of neural circuits and higher cognitive function.

1

Contents

1 Introduction 4
1.1 Historical Background: Neurons . 4
1.2 Biological Background: Neurons . 4
1.3 The Hodgkin-Huxley Model . 5
1.4 Historical Background: Neuron Circuits . 8
1.5 Biological Background: Neuron Circuits . 9
1.6 Project Outline . 9

2 Hodgkin-Huxley Model implementation 9
2.1 Implementation of the Full Hodgkin-Huxley Model . 9
2.2 Variation of Parameters in the Hodgkin-Huxley Model 12

2.2.1 Input Stimulus . 12
2.2.2 Membrane Capacitance . 19
2.2.3 Potassium Conductance . 21
2.2.4 Sodium Conductance . 22
2.2.5 Potassium Reverse Potential . 25
2.2.6 Sodium Reverse Potential . 25

3 Parakh-Varanasi: Hodgkin-Huxley Neural Network 27
3.1 Implementation of the Parakh-Varanasi Model . 27

3.1.1 Parakh-Varanasi Model Structure . 27
3.2 Input Pulses . 29

3.2.1 Gaussian Pulse . 29
3.2.2 Square Pulse . 30
3.2.3 Square Double Pulse . 31
3.2.4 Repeated Square Pulses . 32

3.3 Network Architecture . 33
3.3.1 3 x 3 Architecture . 33
3.3.2 3 x 5 Architecture . 34
3.3.3 5 x 5 Architecture . 35

3.4 Network Weights . 36
3.4.1 Uniform Weights . 36
3.4.2 Random Weights . 37

3.5 Complex Behaviour . 38
3.5.1 Gaussian Pulse . 38
3.5.2 Square Pulse . 39
3.5.3 Square Double Pulse . 40
3.5.4 Repeated Square Pulses . 41

4 Future Work: Neural Circuit Simulation 42
4.1 Model Design . 42
4.2 Model Parameters . 42

5 Appendices 44
5.1 Appendix A: Dependencies . 44
5.2 Appendix B: Hodgkin-Huxley Implementation . 44
5.3 Appendix C: Pulse Definitions . 46

5.3.1 Single Square Pulse . 46
5.3.2 Double Square Pulse . 46
5.3.3 Gaussian Pulse . 46
5.3.4 Repeated Square Pulse . 46

5.4 Appendix D: Sweeping over Parameters . 48
5.5 Appendix E: Plotting Example . 49
5.6 Appendix F: Parakh-Varanasi Implementation . 50
5.7 Appendix G: Parakh-Varanasi Neural Net . 53

2

6 References 53

3

1 Introduction

Among the open questions in the physiology, perhaps none has gripped humanity as strongly the
mystery of how our brains work. Containing approximately 14- 16 billion neurons, the human brain is
by far the most intricate and least understood part of the body. Over the years science has been able
to uncover individual components of the brain, but the high level function of the brain is still largely
a mystery. The goal behind this project is to explore the mathematical relationship between neurons,
neural circuits, and memory.

1.1 Historical Background: Neurons

Before Luigi and Lucia Galeazzi Galvani’s landmark 1791 discovery of animal electricity, the human
body’s function was largely misunderstood. The scholars of the time believed that the bodily functions
were the product of fluid movement and pressure; however, after the discovery that frog legs responded
to electric impulses, the scientific community raced to uncover the relationship between bodily functions
and electricity. By the 1930’s scientists had discovered neurons, action potentials, and a relationship
between ion flow and neuron function, but the details of the relationship still remained a mystery. The
intricacies of this relationship remained a unsolved for nearly 20 years until Alan Hodgkin and Andrew
Huxley published their seminal 1951 paper explaining the relationship between ion channel kinetics and
neuron function. This accomplishment later earned them the 1963 Noble Prize in Physiology/Medicine.

Figure 1: Alan Hodgkin (left) and Andrew Huxley (right)

Before they were Noble prize winning scientists, Hodgkin and Huxley’s professional relationship
began in 1939 when Alan Hodgkin invited then graduate student Andrew Huxley to join him in
Plymouth, Massachusetts studying squid axons. After a short hiatus due to World War 2, the pair
published their first major scientific breakthrough: a dual-electrode voltage clamp. This newly im-
proved voltage clamp allowed the scientists to accurately measure ion flow across a membranes without
affecting the membrane potential. With this device in hand, the pair turned their attention towards
studying neuron action and soon after published their work detailing the mathematical relationship
between ion channels and action potentials.

1.2 Biological Background: Neurons

Before delving into the details of action potentials and Hodgkin and Huxley’s results, it is essential
to understand the morphological structure of the cell itself. As seen below, the key components of a
neuron cell membrane are the plasma membrane (pink), ion channels, and pumps.

Typically, the plasma membrane, a phospholipid bilayer is impermeable to ion flow; however due
to the presence of ion channels and pumps, cells are able to regulate the concentrations of specific

4

Figure 2: Neuron Cell Membrane Diagram

ions within the cell. Constructed from glycoproteins, these ion channels typically open and close in
response to membrane potentials. The interactions between the regulatory behaviors of these bumps
create complex behaviours within the cell. Action potential, one of such behaviours, are the electrical
impulses transmitted across our bodies. They are characterized by a rapid spike in the membrane
potential. The life cycle of an action potential can be seen in the diagram below.

Figure 3: Action Potential Diagram

At a high level action potentials can be thought of as the neurons response to stimulus. As the
incoming signals surpass the threshold, the neuron will open the voltage-gated Na+ gates and positive
ions will influx the cell. As the cell depolarizes and reaches its peak voltage, the Na+ gate closes and
the K+ gate opens allowing K+ to exit the cell. Eventually the cell potential returns to the original
level and enters a refractory period during which the sodium gates are inactivated.

1.3 The Hodgkin-Huxley Model

The original Hodgkin Huxley model was described in the 1952 paper titled “A Quantitative Descrip-
tion of Membrane Current and its Application to Conduction and Excitation in Nerve.” This paper
outlined a mathematical model to explain the initiation and propagation of action potentials in the
giant squid axon. The model is a series of nonlinear differential equations that can be generically
applied to describing action potentials in neurons.

5

In this section, we will present the original Hodgkin-Huxley model and will examine what each of
the parameters in the model represent. This model described the components of the cell as electrical
circuit elements.

The original paper described three different kinds of current that were observed in the squid axon: flow
of sodium ions, flow of potassium ions, and leak current. It was found that the leak current mainly
consisted of chlorine ions. The model describes the resulting state of the axon after an input current
has been applied. We’ll first examine a schematic diagram of the cell shown in Figure 1 and will then
outline the mathematical formalism.

The circuit diagram in Figure 1 is a useful tool to visualize the semi-permeable cell membrane as
an electrical circuit. We see that the top of the figure represents outside the cell membrane, and the
bottom of the cell is inside the cell membrane. Let’s examine what each of the parameters of the model
mean:

Figure 4: Circuit diagram representation of semi-permeable axon membrane

I: This is the current that is applied to the cell, and is equal to the total membrane current density.
This input current on the cell must either pass through the capacitor or one of the three resistors.
The Hodgkin-Huxley model describes the response of a giant squid axon to an input stimulus, so
when simulating, we can examine a variety of different input currents affecting the squid axon.

Il, IK, INa: These currents represent the ionic current densities. They are the current passing through

6

each of the three channels. The three channels are the leakage channel, the potassium channel,
and the sodium channel.

Rl: This resistor describes the resistance of the leakage channel, which mainly consists of chlorine ions

RK, RNa: These resistances correspond to the ionic current densities of potassium and sodium through
their respective channels in the cell membrane. They are different from the resistance of the leaky
channel, as these resistances are not fixed an may change. For example, as the chanels open and
close, these resistances will be altered.

CM: This is the capacitance of the cell membrane. It is the membrane capacity per unit area, and is
assumed to be constant in the model.

El, EK, ENa: The potential that drives ion flow in an out of the membrane is denoted as a battery.
This is the Nernst potential, driven by the difference in ion concentration inside and outside of
the membrane

E: This is the overall potential difference across the membrane, and is equal to the voltage across the
capacitor.

We can translate this circuit representation of the model can now be described in differential
equations. Hodgkin and Huxley originally present the following single equation:

I = CM
dV M

dt
+ Ii (1)

They then define each of the ion currents to be:

INa = gNa(E − ENa) = gNa(VM − V Na) (2)

IK = gK(E − EK) = gK(VM − V K) (3)

I l = ḡℓ(E − Eℓ) = ḡℓ(VM − V ℓ) (4)

They then redefine the conductance’s to account for additional activation parameters n, m, and h.

gK = ḡKn4 (5)

gNa = ¯gNam
3h (6)

We can then use equations 2-6 to expand equation 1 into a series of 4 coupled nonlinear differential
equations as follows:

I = CM
dVm

dt
+ ḡKn4(Vm − Vk) + ¯gNam

3h(Vm − VNa) + ḡℓ(Vm − V ℓ) (7)

dn

dt
= αn(Vm)(1− n)− βn(Vm)n (8)

dm

dt
= αm(Vm)(1−m)− βm(Vm)m (9)

dh

dt
= αh(Vm)(1− h)− βh(Vm)h (10)

Hodgkin and Huxley further define the rate parameters, αi and βi for i = m,n, h as follows:

αn(Vm) =
0.01(10− V)

e
10−V

10 − 1
(11)

βn(Vm) = 0.125e−
V
80 (12)

αm(Vm) =
0.01(25− V)

e
25−V

10 − 1
(13)

βm(Vm) = 4e−
V
18 (14)

7

αh(Vm) = 0.07e−
V
20 (15)

βh(Vm) =
1

e
30−V

10 + 1
(16)

Let’s examine what each of the parameters in the above equations represent. Some of the parameters
described in the circuit are similar to the ones used in the differential equations, but for completeness,
we will describe what each of the parameters in the differential equation system represents here:

I is the current across the entire membrane. It is dependent on the current passing through each of
the channels as well as the resistance and potential for each of the ion flows.

CM is the membrane capacitance, and is treated as a constant in the system.

t is time.

ḡK is the conductance for the potassium channel. This conductance value is used to define the
resistance that is present in our circuit diagram of the cell membrane. The resistance is defined
as the inverse of the conductance.

¯gNa is the conductance for the sodium channel. This value is used to define the resistance of the
sodium channel present in our circuit diagram.

ḡℓ is the conductance for the leak channel. This value is used to define the resistance of the leak
channel in our circuit diagram.

n satisfies equation 8 and is a dimensionless quantity between zero and one. It is a probability that
describes the potassium sub-unit channel activation. Notice, in our equation we have n4. This
is because in the giant squid axon model, the potassium channel is made up of four sub-units
which all must be activated in order for potassium ions to be able to flow into the membrane.

m is similar to n in that it is a dimensionless probability between zero and one which satisfies equation
9. m describes the activation of the sodium sub-unit channel in the membrane. In the model, m
is raised to the power of three because exactly three of the sodium sub-units need to be activated
for sodium ions to flow through the channel.

h is also a dimensionless probability between zero and one which satisfies equation 10. It describes
the sodium channel sub-unit inactivation. This is included in the model because one sodium
sub-unit must be inactive for sodium ions to flow through the membrane.

Vm is the displacement of the membrane potential from its equilibrium value. That is, Vm is the
resulting membrane potential.

VK is the potassium reverse potential. This is the electrochemical gradient of potassium ions inside
and outside of the axon that drives movement through the channels.

VNa is the sodium reverse potential. This is the electrochemical gradient of sodium ions inside and
outside of the axon that drives movement through the channels.

Vℓ is the leak current reverse potential. This number represents an average of the electrochemical
gradient of all of the other ions flowing through the leak channel.

αi and βi and rate constants that determine the speed of movement of through the ith ion channel
for i = m,n, h

1.4 Historical Background: Neuron Circuits

Concurrently with the discovery of neuron function, the scientific community began to study the
relationships between neurons and bodily functions. By 1959, Warren Sturgis McCulloch and Walter
Pitts published the first foundational literature describing processing characteristics of neural networks.
Specifically, in this paper they showed the theoretical underpinnings of arithmetic and logic in artificial
neural networks.

8

1.5 Biological Background: Neuron Circuits

At a high level, brain function can be understood as a response of neural pathways to given stimuli.
Neurons consist of 4 main parts: dendrite, synapse, soma, and axon. The dendrite receives signals for
connected neurons, the soma processes the signal, the axon transmits the signal to other neurons, and
the synapse serves as the point of connection between adjacent neurons. Our nervous system functions
through a complex and interconnected pathway of neurons known as neural circuits.

Figure 5: Neuron Circuit Diagram

These neural circuits conjoin to form large-scale brain networks which are complex networks ac-
tivated for specific bodily functions. At the moment these systems are our best understanding of
cognition.

1.6 Project Outline

With this background in mind, our project’s focus is two-fold: explore the dynamics of the Hodgkin-
Huxley model and model neural circuits of Hodgkin-Huxley neurons. We begin with an initial imple-
mentation and exploratory analysis of the Hodgkin-Huxley system with a specific focus on non-linear
behavior. Afterwards, we construct a neural net of Hodgkin-Huxley Neurons and explore the efficacy
of the networks as signal transmitters. Finally, we explore the possibility of reproducing input signals
via weight re-parameterization of the network.

2 Hodgkin-Huxley Model implementation

In problem set 5, we implemented a very reduced version of the Hodgkin-Huxley model. Here, we
provide code to implement the full model as it was described. Then, we’ll vary several of the parameters
in the model to try and understand what they do.

2.1 Implementation of the Full Hodgkin-Huxley Model

The python script for the implementation of the Hodgkin-Huxley model defined in the previous section
can be found in Appendix B. Using this model, we can define arbitrary input pulses that will act on
the axon we are simulating. To visualize this, we can think back to the circuit diagram in Figure
3. The pulse we apply is modeled by the I entering the cell. Our main output is the potential re-
sponse of the membrane (Vm), which in the circuit corresponds to the potential across the circuit (∆E).

Using the model, we we use the following parameters as a baseline.

• Start time (t0, in s): 0

• End time (t1, in s): 100

• Membrane Capacitance (C, in µF
cm2): 1.0

9

• Potassium potential (VK, in mV): -10.0

• Sodium potential (VNa, in mV): 110.0

• Leak potential (Vl, in mV): 10.0

• Potassium channel conductance (gK, in mS
cm2): 4.0

• Sodium channel conductance (gNa, in mS
cm2): 4.0

• Potassium channel conductance (gL, in mS
cm2): 1.0

Now we apply a simple square pulse at t = 0, and simulate the response of the axon over time.

We can also plot the three activation parameters over time in response to this pulse.

10

Figure 6: Plot of input stimulus and axon potential over time, along with subplots of n, m, and h, the
activation parameters, against Vm. The final plot on the bottom left is a plot of the Potassium and
Sodium currents over time

Figure 7: Plot of n (potassium sub-unit channel activation), m(sodium sub-unit channel activation),
and h(sodium channel sub-unit inactivation) against time. n, m, and h are probabilities that take
values between zero and one

We see that our model seems to be working, and has some interesting results that can help us better
understand what is going on. First, in Figure 5, we see that the membrane potential responds directly
to a current as a spike in potential, which makes sense. We notice that our simulated output for the

11

potential fits Figure 2’s action potential very well. We start with depolarization and repolarization,
and see our system enter a refractory period at t = 5, and then it decays to its steady state. We also
see that the potassium and sodium currents spike when the stimulus is applied, and then gradually
decay over time.

It is interesting to see that the plots of m, n, and h against the membrane potential are almost cyclic,
indicating that there is some sort of dependent pattern between the membrane’s potential and how the
activation/inactivation of the channels. We also notice that these plots are multi-valued, suggesting
that the activation does not depend only on the potential, but also on its previous values. We will
see that some interesting limit cycles emerge from this idea when we apply more complicated stimulus
pulses.

2.2 Variation of Parameters in the Hodgkin-Huxley Model

To get a better understanding of what effect each of the parameters in the Hodgkin-Huxley model has
on the system, here, we vary each parameter while holding the others constant and examine the effect
on the system

2.2.1 Input Stimulus

Here, we vary the input stimulus from a single square pulse to a double square pule, a Gaussian pulse,
and then a repeated pulse to examine the effects on the system.

Double Square Pulse

12

Figure 8: Same plot as Figure 5 but with a different input pulse

13

Figure 9: Same plot as Figure 6 but with a different input pulse

Gaussian Pulse

14

Figure 10: Same plot as Figure 5 but with a different input pulse

15

Figure 11: Same plot as Figure 6 but with a different input pulse

Repeated Square Pulse

16

Figure 12: Same plot as Figure 5 but with a different input pulse

17

Figure 13: Same plot as Figure 6 but with a different input pulse

It is evident that the input pulse has huge impacts on the system. The potential of the system seems
to respond directly to the shape and magnitude of the input pulse.

In the two square pulses, the system output is exactly what we expect - two spikes in axon potential,
corresponding spikes in activation and inactivation parameters, and an eventual decay to steady state.

The Gaussian input pulse is also shows similar expected behaviour to the square pulses for all plots
except for the Potassium and Sodium current plots over time (Bottom right of figure 9). We notice that
in the plots with square pulses, the potassium and sodium currents are relatively equal in magnitude
and opposite in sign. However, for the Gaussian pulse, the magnitude of the sodium peak is much

18

smaller than potassium peak in current, and is shifted farther to the left. It seems that the Sodium
current is being damped at a much more fast rate than the potassium current, which implies that the
sodium resistance is higher than the potassium resistance.

Finally, we notice that when running the repeated pulse, m, n, and h, enter limit cycles over time
and do not vary much from these cycles. This can be seen in the potassium and sodium currents over
time, as well as in the axon response to the stimulus, which both stabilize and become periodic.

2.2.2 Membrane Capacitance

We recognize that the most important plot to understand and display is the membrane potential
over time. So, when we vary the following parameters, we will plot only the neuron potential for
various values of the parameters.

In this section, we vary the membrane capacitance (Cm) to see what effects it has on the system.

19

Figure 14: Plot of membrane potential response to a double square pulse while varying membrane
capacitance from C = -5 to C = 100

We see that the membrane capacitance has an impact on the magnitude of the potential response
function. We notice that as we increase the value of the capacitance, the magnitude of the potential
decreases. However, the capacitance does not affect the steady state of the membrane potential for
times long after the pulse was applied when the capacitance is within normal ranges. In the differential
equation model of the system, we see that Cm appears as a factor in equation 7. If we rearrange the
equation to solve for dVm

dt , we see that the entire equation is multiplied by a factor of Cm. This is
consistent with the results we simulated, in that Cm acts like a multiplicative factor on the magnitude
of the response, but doesn’t change its shape within small ranges.

20

We can conclude that the capacitance of a cell does not have a large impact on the equation, and
should be chosen to most accurately fit experimental data.

2.2.3 Potassium Conductance

We vary the potassium conductance and plot the results.

Figure 15: Plot of membrane potential response to a double square pulse while varying potassium
conductance from gk = -5 to gk = 100

We notice that the potassium conductance has more nontrivial effects on the system than the
membrane capacitance. Immediately, we see that increasing gk decreases the potential response slightly,
but also has an interesting affect on the refractory period. Indeed, we see that when gk ≤ 0, there

21

is no refractory period in the system’s response, and that increasing gk increases the magnitude and
length of the refractory period.

2.2.4 Sodium Conductance

Figure 16: Plot of membrane potential response to a double square pulse while varying sodium con-
ductance from gNa = -5 to gNa = 100

Examining gNa’s effect on the system is quite interesting. Until gNa = 41, we see that increasing
gNa increases the magnitude of the membrane potential spike and increases the potential dip during
the refractory period. However, once we have gNa = 41, we see that the refractory period does not
reset to the stable state but actually crosses it and then approaches it slowly. Increasing gNa more,
we see that this behaviour increases, and it causes periodic spikes to emerge. by gNa = 45. it is clear

22

that we have some periodic behaviour emerging, which is even more evident when we show gNa = 100.

This is quite odd, as the system is behaving as if it has a repeated pulse (like in Figure 11) while
only being driven twice. This suggests that there is some bifurcation happening at this point, where
the system goes from falling into a stable fixed point to entering a limit cycle. We know that the
current through the neuron, and thus the potential, is determined by the activation and inactivation of
the channels in and out of the neuron. So, to further examine this bifurcation, we plot the activation
parameters m, n, and h over time and then against the membrane potential.

Figure 17: Plot of m, n, and h against time in response to a double square pulse while varying sodium
conductance from gNa = -5 to gNa = 100

23

Figure 18: Plot of m, n, and h against membrane potential in response to a double square pulse while
varying sodium conductance from gNa = -5 to gNa = 100

In figure 16, we see that there is clear evidence of the activation and inactivation parameters
becoming periodic from gNa = 41 to gNa = 45. In figure 17, we can actually see the limit cycles that
these parameters enter. Notice that for low gNa, there is no limit cycle behaviour. However, it begins
to emerge as we increase gNa higher.

24

2.2.5 Potassium Reverse Potential

Figure 19: Plot of membrane potential in response to a double square pulse while varying potassium
reverse potential from gNa = -50 to gNa = 200

It’s evident that the potassium reverse potential mainly affects the refractory period, in that a
lower potassium reverse potential means that the refractory period is greater. Indeed, when Vk gets
large enough, our refractory period becomes so large that it dominates the system’s response.

2.2.6 Sodium Reverse Potential

Varying VNa has the opposite effect, as is predicted because the current is opposite for the sodium and
potassium channels. When we increase VNa, we actually see that the refractory period increases, as is
clear from Figure 19.

25

Figure 20: Plot of membrane potential in response to a double square pulse while varying sodium
reverse potential from gNa = -50 to gNa = 300

26

3 Parakh-Varanasi: Hodgkin-Huxley Neural Network

With our understanding of the dynamics of Hodgkin-Huxley neurons, our next step is to construct a
neural network of Hodgkin-Huxley neurons with the attention of elucidating neural circuit function.
We design our model as follows:

Figure 21: Parakh-Varanasi Diagram

At a high level, our models takes an input stimulus which is processed by an initial Hodgkin-Huxley
neuron. The resulting neuron potential is then translated to a current via a simply Ohm’s law relation:
V = IR and transmitted along to the first layer of neurons. The diagram above depicts a network
with 3 nodes in the first layer and 3 nodes in the second layer; however, the model is generalizable to
n layer 1 neurons and m layer 2 neurons. The transmitted signal is then scaled by a weight parameter
unique to each neural connection. The new scaled connection is then processed by each neuron in
layer 1 and transmitted to layer 2. Once again, these signals are re-scaled by an additional weight
parameter unique to each connection. For neurons recieving multiple signals, the signal is additive
so that the processed input stimulus is simply a sum of the total input signals. Finally, the layer 2
neurons transmit their scaled signals to the final HH neuron which produces a final output signal.

3.1 Implementation of the Parakh-Varanasi Model

3.1.1 Parakh-Varanasi Model Structure

A full write up the code can be found in Appendix F: Parakh-Varansi Implementation, but this section
will provide a brief walk through of the parameters and function of the model.

Inputs

• input signal (10,000 x 1): Vector of electrical stimulus over time

• params (n x 1): Vector corresponding to network weights

• input name (string): Plot label

• l1 size (integer): # of neurons in 1st layer

• l2 size (integer): # of neurons in 2nd layer

27

Following the Parakh-Varansi model the script uses the inputted parameters to produce an output
signal and a series of plots describing the function of the network. In particular, the script produces a
plot of input vs. output signal for each neuron in the network. Additionally, the script produces phase
portraits for each opening/closing probability n,m, and h as a function of cell potential.

For a simple Gaussian pulse inputted into a network of 3 layer 1 nodes and 3 layer 2 nodes with
uniform weights, the following outputs are produced:

Figure 22: Uniform weight w/ Gaussian Stimulus

Figure 23: Phase Portrait of Uniform weight w/ Gaussian Stimulus

28

3.2 Input Pulses

With our constructed model, the first dimension we explore is how our model processes various input
stimuli. We explore the same stimuli explored in the initial phase of this project.

3.2.1 Gaussian Pulse

The first stimulus we explore is the simple gaussian pulse.

Figure 24: Uniform weight w/ Gaussian Stimulus

As you can see in the final and bottom-most plot, the Parakh-Varanasi network shifts the output
peak from 50 seconds to approximately 5 seconds. In each of the preceding panels, you can notice
the gradual development of initial impulse, with a smaller initial peak appearing in the first layer and
eventually reaching its final form in the output. The occurrence of this signal can be explained by the
small non-zero impulse exerted by the early stages of the Gaussian stimulus. The incoming current
excites the cell to produce a potential change which is then translated forward as a larger current.
With each subsequent layer of the network, this signal is amplified. As a consequence of this initial
peak, the neuron enters its refractory period during which it is unable to respond to incoming signals.
For this reason, we see that the initial Gaussian impulse is reduced in each layer of the network. With
this, we can conclude that the network did not shift the peak, but rather produced a separate initial
peak and smoothed out the original stimulus.

29

3.2.2 Square Pulse

The next stimuli we explore is the simple square pulse.

Figure 25: Uniform weight w/ Square Stimulus

We see that Parakh-Varanasi model translates the initial square stimulus into a shifted gaussian
peak. In each of the individual neurons we notice that the produced peak closely emulates the provided
signal; however, through the additive smoothing effects of the network, the final signal produced has
a smaller magnitude and is more widely distributed than the original impulse.

30

3.2.3 Square Double Pulse

The next signal we explore is the square double pulse.

Figure 26: Uniform weight w/ Square Double Stimulus

Much like the single square pulse, we see that the individual neurons are able to aptly reproduce
their provided input signals; however, as a whole the network reduces the magnitude and shifts the
peak of the stimulus forward. One important feature to note is that the initial peak produces a much
stronger output impulse, but the second and subsequent output peak is relatively smaller than the
provided second stimulus peak. This action can once again be explained by the refractory period of
the neuron during which it is less responsive to stimuli. Since the neuron was initially excited and has
not had time to return to original conditions, subsequent excitements produce muted responses. We
continue to notice this phenomena in our next phase, the repeated square pulse.

31

3.2.4 Repeated Square Pulses

Figure 27: Uniform weight w/ Repeated Square Stimulus

Similar to the square double pulse, we see that the action of the Parakh-Varanasi model is to
translate the inputted square stimuli into wider gaussian peaks that reach their apex a couple seconds
after the peaks of the initial inputs. We also continue to notice the refractory phenomena in which
responses after the initial stimuli are muted. One feature to note is that the non-preliminary responses
are identical in magnitude and spacing indicating that the refractory period effect is equal in magnitude
for each excitement.

32

3.3 Network Architecture

In this section, we explore the impact of network architecture on the signal processing behavior of our
model. We label each network architectures n by m with n corresponding to the number of nodes in
the first layer and m corresponding to the number of nodes in the second layer of the network. We
begin with a recap of the 3 x 3 architecture extensively studied in the previous sections. Once again,
we continue with a repeated square pulse for consistency.

3.3.1 3 x 3 Architecture

Figure 28: 3x3 Uniform weight w/ Repeated Square Stimulus

33

3.3.2 3 x 5 Architecture

Figure 29: 3x5 Uniform weight w/ Repeated Square Stimulus

In comparison to the standardized 3 x 3 architecture, we see that the new network is able to produce
slightly more complex output behaviour. In addition to altering the magnitude, we see that the output
peaks are slightly sharper in the 3 x 3 counterpart.

34

3.3.3 5 x 5 Architecture

Figure 30: 5x5 Uniform weight w/ Repeated Square Stimulus

Similar to the 3 x 5 architecture, we see that the addition of additional nodes into the model
produces more complex output behavior and stronger response peaks.

35

3.4 Network Weights

With our understanding of how our model responds to different network stimuli and architectures, we
begin looking into the effect of network weights. For simplicity, the following section will focus on the
repeated square pulse to standardize the comparison between network weights.

3.4.1 Uniform Weights

We begin with a recap of the model with uniform weights for each connection.

Figure 31: Uniform weight w/ Repeated Square Stimulus

36

3.4.2 Random Weights

In this section we explore the Parakh-Varanasi model with random weights. Specifically, each weight
parameter arbitrarily takes a value between 0 and 1.

Figure 32: Random weight w/ Repeated Square Stimulus

Although it is slightly obscured by the scaling of the graphs, we notice that the weights are able
to control for the magnitude of peaks produced in the network. We notice that the cyclic and output
behaviors pointed out in earlier sections are preserved through network weight transformations. We
posit that through sufficient manipulation of network weights; we may be able to excite complex
behavior from the network.

37

3.5 Complex Behaviour

In this section of our exploratory analysis we look into the complex behavior of our Parakh-Varanasi
system. In particular, we analyze the phase diagrams of n, m, and h, the probability of sub-unit
activation and deactivation as a function of cell potential. Once again for consistency, we are looking
at a 3 x 3 network architecture with uniform weights.

3.5.1 Gaussian Pulse

Figure 33: Phase Portraits of Gaussian Stimulus

As you can see in the phase portraits, there appears to be a limit cycle around which the three
activation/deactivation parameters orbit. We notice that as we propagate our signal through the
network, we retain the same macro scale non-linear behavior. For example, the limit cycles in the first
neuron are preserved in our final neuron. However, despite the macro-scale structure being preserved,
the limit cycle appears to become tighter. This phenomena is especially apparent between the 1st and
2nd layer in which we see the diameter of the orbit decrease.

38

3.5.2 Square Pulse

Figure 34: Phase Portraits of Square Stimulus

With the square pulse stimulus, we observe an attracting fixed point int0 which the activation/d-
iffusion parameters settle in. We once again observe that the network is able to preserve complex
behavior with the fixed points existing in each stage of the network. Like the Gaussian pulse we see
that the network translates the fixed points as stimulus traverses through the system.

39

3.5.3 Square Double Pulse

Figure 35: Phase Portraits of Square Double Stimulus

With the square double pulse input we notice psuedo-limit cycle behavior in each stage of the
network. Unlike true limit cycle behavior, the response observed in this situation is partially a response
to the secondary response. See see that the fixed point in the single pulse model evolves into an orbit
here.

40

3.5.4 Repeated Square Pulses

Figure 36: Phase Portraits of Repeated Square Stimulus

We continue to observe the same phenomena with the repeated square pulse as we see strongly
defined cyclic behavior in each phase of the network. The tightening of the limit cycle is much stronger
in this model with the final output limit cycles having a much smaller radius than the initial input
phase diagram. As observed in the other phase portraits we see that the model preserves complex
behavior.

41

4 Future Work: Neural Circuit Simulation

With our understanding of the dynamics Parakh-Varanasi model our next step is to optimize the
parameters of our model to produce specified outputs. In the framework of memory and neural
circuits the idea is to learn the neural network conditions that are able to reproduce a specified output
given a series of inputs.

Figure 37: Example of Signal Reproduction

A full work through of this goal is outside the scope of this project, so we outlined a series of
steps and avenues that we would study if we were to continue this project. We posit that the Parakh-
Varanasi model would be able to reproduce a given signal via a psuedo-fourier decomposition of the
desired signal into the space of outputs producible by our model. //

4.1 Model Design

At a high level the model would be trained and developed as follows:

mm

Figure 38: Training Model Architecture

Given an initial input signal, a neural net would re-parameterize the signal into the inputs of our
Parakh-Varanasi model. At the simplest stage, this would correspond to the weights of the connections
in our network. These paramteres would then be passed into the Parakh-Varanasi model along with
the initial input signal to produce an output signal. This output signal would then be compared to
our desired output form and a simple mean-sqaured error loss function would be applied. With this
loss function the network would be able to learn the parameters of the Parakh-Varanasi model that
would produce desired outputs.

4.2 Model Parameters

Once a basic minimum viable produce is completed, we outline the following areas as possible additions
to the model.

• Neuron Parameters: Adding functionality to adjsut the parameters of each neuron allows us to
prodcue new and complex behaviours with our model. For example, allowing certain cells to
have lowered membrane capacitance or higher channel conductance will modify the dynamics of
the signal processing. By doing so, we will provide more flexibility to our model.

42

• Internal Layers: Adding more layers to the model allows us to better replicate brain function
and reproduce more complex output characteristics.

• Layer Interconnections: Adding inter-layer connections and feedback loops allows the model to
better model true neural circuits and produce more intricate behaviours.

43

5 Appendices

5.1 Appendix A: Dependencies

There are several dependencies that are required to run the code in Appendix B. The following packages
must be installed onto your local machine:

NumPy 1.22.3

SciPy 1.9.1

Python 3.9.12

Matplotlib 3.5.2

Once installed, you can then import the required modules and classes from these packages by running
the following imports.

1 # Imports
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 import matp lo t l i b . pyplot as p l t
5 import numpy as np
6 from sc ipy . i n t e g r a t e import ode int

5.2 Appendix B: Hodgkin-Huxley Implementation

Here we provide the code implementation for the Hodgkin Huxley Model written in Python 3.9.12.
This does not include any plotting methods used, or the parameter changes. These are provided in
other appendices.

1 # Star t and end time (in m i l l i s e c ond s)
2 t0 = 0
3 t1 = 100
4 t = np . l i n s p a c e (t0 , t1 , 100000)
5

6 # Membrane capac i tance (uF/cmˆ2)
7 C = 1.0
8

9 # Potassium po t en t i a l (mV)
10 VK = −10
11

12 # Sodium po t en t i a l (mV)
13 VNa = 110
14

15 # Leak po t e n t i a l (mV)
16 Vl = 10 .0
17

18 # Potassium channel conductance (mS/cmˆ2)
19 gK = 4.0
20

21 # Sodium channel conductance (mS/cmˆ2)
22 gNa = 4 .0
23

24 # Leak channel conductance (mS/cmˆ2)
25 gL = 1 .0
26

27 # Rate func t i on s as de f ined in model
28 de f a lpha n (Vm) :
29 re turn (0 . 01 ∗ (10 . 0 − Vm)) / (np . exp ((1 0 . 0 − Vm) / 10 . 0) − 1 . 0)

44

https://numpy.org
https://scipy.org
https://www.python.org
https://matplotlib.org

30

31 de f beta n (Vm) :
32 re turn 0 .125 ∗ np . exp(−Vm / 80 . 0)
33

34 de f alpha m (Vm) :
35 re turn (0 . 1 ∗ (25 . 0 − Vm)) / (np . exp ((2 5 . 0 − Vm) / 10) − 1 . 0)
36

37 de f beta m (Vm) :
38 re turn 4 .0 ∗ np . exp(−Vm / 18 . 0)
39

40 de f a lpha h (Vm) :
41 re turn 0 .07 ∗ np . exp(−Vm / 20 . 0)
42

43 de f beta h (Vm) :
44 re turn 1 .0 / (np . exp ((30 − Vm) / 10) + 1 . 0)
45

46 # Now de f i n e the n , m, and h ’ s long term behvious as de s c r ibed in the
model

47 de f n i n f (Vm=0.0) :
48 re turn alpha n (Vm) / (alpha n (Vm) + beta n (Vm))
49

50 de f m inf (Vm=0.0) :
51 re turn alpha m (Vm) / (alpha m (Vm) + beta m (Vm))
52

53 de f h i n f (Vm=0.0) :
54 re turn alpha h (Vm) / (alpha h (Vm) + beta h (Vm))
55

56 # In the d i f f e r e n t i a l equat ions de f ined , ex t e rna l s t imulus i s not
dep i c ted

57 # we encode i t as a cur rent dens i ty in the input s i g n a l .
58 # Sing l e square pu l s e impl imentat ion
59 de f I s qua r e (t) :
60 i f 0 . 0 < t < 1 . 0 :
61 re turn 100 .0
62 re turn 0 .0
63 # return 100 .0 ∗ np . exp(−np . power (t − 50 . 0 , 2 . 0) / (2 . 0 ∗ np . power

(5 . 0 , 2 . 0)))
64

65 de f d e r i v a t i v e s (y , t0 , C = C, VK = VK, VNa = VNa, Vl = Vl , gK = gK, gNa =
gNa , gL = gL , pu l s e = I squa r e) :

66 dy = np . z e ro s ((4 ,))
67

68 Vm = y [0]
69 n = y [1]
70 m = y [2]
71 h = y [3]
72

73 # dn/dt
74 dy [1] = (alpha n (Vm) ∗ (1 . 0 − n)) − (beta n (Vm) ∗ n)
75

76 # dm/dt
77 dy [2] = (alpha m (Vm) ∗ (1 . 0 − m)) − (beta m (Vm) ∗ m)
78

79 # dh/dt
80 dy [3] = (alpha h (Vm) ∗ (1 . 0 − h)) − (beta h (Vm) ∗ h)
81

45

82 # dVm/dt
83 dy [0] = (pu l s e (t0) / C) − (((gK / C) ∗ np . power (n , 4 . 0))
84 ∗ (Vm − VK)) − (((gNa / C) ∗ np . power (m, 3 . 0) ∗ h

)
85 ∗ (Vm − VNa)) − ((gL / C) ∗ (Vm − Vl))
86

87 re turn dy
88

89 # Solve ODE system
90 s t a t e = np . array ([0 . 0 , n i n f () , m inf () , h i n f ()])
91 r e s u l t s = ode int (d e r i v a t i v e s , s ta te , t , a rgs = (C, VK, VNa, Vl , gK, gNa ,

gL , I s qua r e))

5.3 Appendix C: Pulse Definitions

Here we provide code that was used to define the different types of input pulses to the squid axon.
These pulses must be passed into the derivatives function as the pulse parameter when using SciPy
odeint.

5.3.1 Single Square Pulse

This is the code used to define a single square pulse as the external stimulus to the system.

1 # Sing l e square pu l s e implementation
2 de f I s qua r e (t) :
3 i f 0 . 0 < t < 1 . 0 :
4 re turn 100 .0
5 re turn 0 .0

5.3.2 Double Square Pulse

This is the code used to define a double square pulse as the external stimulus to the system. This type
of pulse is applied to the system when varying other parameters such as the membrane capacitance,
various channel conductances, etc.

1 # Double square pu l s e implementation
2 de f I doub l e squa r e (t) :
3 i f 0 . 0 < t < 1 . 0 :
4 re turn 100 .0
5 e l i f 10 .0 < t < 1 1 . 0 :
6 re turn 50 .0
7 re turn 0 .0

5.3.3 Gaussian Pulse

This is the code used to define a Gaussian pulse centered at 50ms with a standard deviation of 5ms.

1 # Gaussian pu l s e implementation
2 de f I g au s s i an (t) :
3 re turn 100 .0 ∗ np . exp(−np . power (t −
4 50 . 0 , 2 . 0) / (2 . 0 ∗ np . power (5 . 0 , 2 . 0)))

5.3.4 Repeated Square Pulse

This is the code used to define a square pulse that repeats every 10ms for 100ms in duration.

46

1 # Repeated square pu l s e implementation
2 de f I s qua r e r ep ea t ed (t) :
3 # apply a pu l s e every 10 seconds
4 re turn 100 .0 ∗ (t % 10 .0 < 0 . 5)

We provide a plot of each of the four current stimuli here:

Figure 39: Plot of a square pulse, double square pulse, Gaussian pulse, and repeated square pulse.
These pulses are used as the external stimulus to our system

47

5.4 Appendix D: Sweeping over Parameters

In our analysis, we do a sweep over various parameters defined in the Hodgkin-Huxley model and plot
the membrane potential as we change them. We do this for all the parameters in the model. Here we
provide an example python script for how to sweep over and plot the membrane capacitance, CM .

1 # Sweep over a range o f membrane capac i t ance s
2 t0 = 0
3 t1 = 100
4 t = np . l i n s p a c e (t0 , t1 , 100000)
5

6 f i g , ax = p l t . subp lo t s (3 , 3 , f i g s i z e =(20 , 20))
7 ax = ax . reshape (−1)
8

9 # Plo t t i ng the s t imulus over time
10 ax [0] . p l o t (t , Idv)
11 ax [0] . s e t y l a b e l (r ’ Current dens i ty (uA/$cmˆ2$) ’)
12 ax [0] . s e t x l a b e l (’Time ’)
13 ax [0] . s e t t i t l e (’ St imulus over Time ’)
14

15 # Def ine the d i f f e r e n t membrane capac i t ance s we want to t e s t . This can be
changed by the user

16 # Membrane capac i tance (uF/cmˆ2)
17 Cs = [−5 , −1 ,0.0001 , 1 ,2 , 5 ,10 , 100]
18

19 # Now i t e r a t e through those capac i t ance s and apply each one in the s o l v e r
.

20 f o r i , Curr in enumerate (Cs) :
21

22 # Solve ODE system
23 s t a t e = np . array ([0 . 0 , n i n f () , m inf () , h i n f ()])
24 r e s u l t s = ode int (d e r i v a t i v e s , s ta te , t , a rgs = (Curr , VK, VNa, Vl , gK

, gNa , gL , I doub l e squa r e))
25

26 # Input s t imulus
27 Idv = [I doub l e squa r e (t) f o r t in t]
28

29 # Plot neuron po t e n t i a l over time
30 ax = ax . reshape (−1)
31 ax [i +1] . p l o t (t , r e s u l t s [: , 0])
32 ax [i +1] . s e t x l a b e l (’Time ’)
33 ax [i +1] . s e t y l a b e l (’Vm’)
34 ax [i +1] . s e t t i t l e (’ Neuron Pot en t i a l over Time f o r C = {} ’ . format (C))

48

5.5 Appendix E: Plotting Example

In our analysis, we provide several plots of the system over time. Here we give some example python
scripts on how to generate these plots. Note that these python scripts use the above Hodgkin-Huxley
model code, and require that the model is compiled and run before these examples can be used.

Here is a plotting example with the repeated square input pulse. First we plot the input stimulus,
the membrane potential, parameters versus the membrane potential, and channel currents over time.

1 de f I s qua r e r ep ea t ed (t) :
2 # apply a pu l s e every 10 seconds
3 re turn 100 .0 ∗ (t % 10 .0 < 0 . 5)
4

5 t0 = 0
6 t1 = 100
7 t = np . l i n s p a c e (t0 , t1 , 100000)
8

9 # Solve ODE system
10 s t a t e = np . array ([0 . 0 , n i n f () , m inf () , h i n f ()])
11 r e s u l t s = ode int (d e r i v a t i v e s , s ta te , t , a rgs = (C, VK, VNa, Vl , gK, gNa ,

gL , I s qua r e r ep ea t ed))
12

13 # Input s t imulus
14 Idv = [I s qua r e r ep ea t ed (t) f o r t in t]
15

16 # Plot neuron po t e n t i a l over time
17 f i g , ax = p l t . subp lo t s (3 , 2 , f i g s i z e =(20 , 20))
18 ax = ax . reshape (−1)
19 ax [1] . p l o t (t , r e s u l t s [: , 0])
20 ax [1] . s e t x l a b e l (’Time ’)
21 ax [1] . s e t y l a b e l (’Vm’)
22 ax [1] . s e t t i t l e (’ Neuron Pot en t i a l over Time ’)
23 # Plo t t i ng the s t imulus over time
24 ax [0] . p l o t (t , Idv)
25 ax [0] . s e t y l a b e l (r ’ Current dens i ty (uA/$cmˆ2$) ’)
26 ax [0] . s e t x l a b e l (’Time ’)
27 ax [0] . s e t t i t l e (’ St imulus over Time ’)
28

29 # Plot some t r a j e c t o r i e s
30 ax [2] . p l o t (r e s u l t s [: , 0] , r e s u l t s [: , 1] , l a b e l=’Vm − n ’)
31 ax [3] . p l o t (r e s u l t s [: , 0] , r e s u l t s [: , 2] , l a b e l=’Vm − m’)
32 ax [4] . p l o t (r e s u l t s [: , 0] , r e s u l t s [: , 3] , l a b e l=’Vm − h ’)
33 ax [2] . s e t t i t l e (’N vs Vm’)
34 ax [2] . s e t x l a b e l (’Vm’)
35 ax [2] . s e t y l a b e l (’n ’)
36 ax [2] . l egend ()
37 ax [3] . s e t t i t l e (’M vs Vm’)
38 ax [3] . s e t x l a b e l (’Vm’)
39 ax [3] . s e t y l a b e l (’m’)
40 ax [3] . l egend ()
41 ax [4] . s e t t i t l e (’H vs Vm’)
42 ax [4] . s e t x l a b e l (’Vm’)
43 ax [4] . s e t y l a b e l (’h ’)
44 ax [4] . l egend ()
45

46 # plo t Ik and Ina over time
47 ax [5] . p l o t (t , gK ∗ np . power (r e s u l t s [: , 1] , 4 . 0) ∗ (r e s u l t s [: , 0] − VK) ,

l a b e l=’K’)
48 ax [5] . p l o t (t , gNa ∗ np . power (r e s u l t s [: , 2] , 3 . 0) ∗ r e s u l t s [: , 3] ∗ (

49

r e s u l t s [: , 0] − VNa) , l a b e l=’Na ’)
49 # ax [5] . p l o t (t , gL ∗ (r e s u l t s [: , 0] − Vl) , l a b e l =’L ’) ## LEAK CURRENT

PLOT
50 ax [5] . s e t t i t l e (’K and Na cur r en t s over time ’)
51 ax [5] . l egend ()

Next we plot the three parameters, m, n, and h over time using the following python script.

1 # Now p lo t n , m, and h over time
2 f i g , ax = p l t . subp lo t s (4 , 1 , f i g s i z e =(20 , 20))
3

4 # Plo t t i ng the s t imulus over time
5 ax [0] . p l o t (t , Idv)
6 ax [0] . s e t y l a b e l (r ’ Current dens i ty (uA/$cmˆ2$) ’)
7 ax [0] . s e t x l a b e l (’Time ’)
8 ax [0] . s e t t i t l e (’ St imulus over Time ’)
9

10 ax [1] . p l o t (t , r e s u l t s [: , 1] , l a b e l=’n ’)
11 ax [2] . p l o t (t , r e s u l t s [: , 2] , l a b e l=’m’)
12 ax [3] . p l o t (t , r e s u l t s [: , 3] , l a b e l=’h ’)
13 ax [1] . s e t t i t l e (’n over time ’)
14 ax [1] . l egend ()
15 ax [2] . s e t t i t l e (’m over time ’)
16 ax [2] . l egend ()
17 ax [3] . s e t t i t l e (’h over time ’)
18 ax [3] . l egend ()
19

20 p l t . show ()

5.6 Appendix F: Parakh-Varanasi Implementation

1 de f HH net (i npu t s i gna l , params , input name , l 1 s i z e =3 , l 2 s i z e =3) :
2

3

4 #Read in Weights
5 weights1 = np . array (params [: l 1 s i z e]) . reshape (1 , l 1 s i z e)
6 weights2 = np . array (params [l 1 s i z e : l 1 s i z e + l 1 s i z e ∗ l 2 s i z e]) .

reshape (l 1 s i z e , l 2 s i z e)
7 weights3 = np . array (params [l 1 s i z e + l 1 s i z e ∗ l 2 s i z e :]) . reshape (

l 2 s i z e , 1)
8

9 #Creat subplot f i g u r e s
10 f i g=p l t . f i g u r e (f i g s i z e =(30 ,20))
11 f i g 1=p l t . f i g u r e (f i g s i z e =(30 ,20))
12

13 #Figure T i t l e s
14 f i g . s u p t i t l e (” {} {} by {} Network Propogation ” . format (input name ,

l 1 s i z e , l 2 s i z e) , s i z e = 60)
15 f i g 1 . s u p t i t l e (” {} {} by {} Phase Po r t r a i t s ” . format (input name ,

l 1 s i z e , l 2 s i z e) , s i z e = 60)
16

17

18 c o l s = max ([l 1 s i z e , l 2 s i z e])
19 gs=GridSpec (4 , c o l s)
20 ax1=f i g . add subplot (gs [0 , :])
21 axf=f i g . add subplot (gs [3 , :])
22

50

23 gs1=GridSpec (4 , c o l s)
24 pp ax1=f i g 1 . add subplot (gs1 [0 , :])
25 pp axf=f i g 1 . add subplot (gs1 [3 , :])
26

27

28

29 #Create Neural Net Layers
30 l ay e r1= []
31 f o r i in range (l 1 s i z e) :
32 s t a t e = np . array ([0 . 0 , n i n f () , m inf () , h i n f ()])
33 H = HH neuron (s t a t e)
34 l ay e r1 . append (H)
35

36 l ay e r2= []
37 f o r i in range (l 2 s i z e) :
38 s t a t e = np . array ([0 . 0 , n i n f () , m inf () , h i n f ()])
39 H = HH neuron (s t a t e)
40 l ay e r2 . append (H)
41

42 # Pass S igna l through f i r s t neuron
43 t= np . l i n s p a c e (0 ,100 , t count)
44 i n pu t s t a t e = np . array ([0 . 0 , n i n f () , m inf () , h i n f ()])
45 r e s u l t s = ode int (d e r i v a t i v e s d a t a (i n pu t s i g n a l) , s ta te , t)
46

47 V i n i t i a l = r e s u l t s [: , 0]
48

49 #Plot I n i t i a l node p l o t s
50 ax1= f i g . add subplot (gs [0 , :])
51 ax1 . p l o t (t , i npu t s i gna l , l a b e l = ” Input S igna l ”)
52 ax1 . p l o t (t , V i n i t i a l , l a b e l = ’Network S igna l ’)
53 ax1 . s e t t i t l e (” Input S igna l vs Node 1 S igna l ”)
54

55

56 ax= f i g 1 . add subplot (gs1 [0 , :])
57 ax . p l o t (V i n i t i a l , r e s u l t s [: , 1])
58 ax . p l o t (V i n i t i a l , r e s u l t s [: , 2])
59 ax . p l o t (V i n i t i a l , r e s u l t s [: , 3])
60 ax . s e t t i t l e (” I n i t i a l Phase Po r t r a i t ”)
61

62

63 #Pass input s i g n a l to 1 s t l a y e r
64 V1s = []
65 V1 in = np . array (V i n i t i a l , ndmin= 2) .T @ weights1
66

67

68 f o r j in range (l 1 s i z e) :
69

70 val , va l n , val m , va l h= Vin to Vout (V1 in [: , j] , l ay e r1 [j])
71

72 ax2 = f i g . add subplot (gs [1 , j])
73 ax2 . s e t t i t l e (”Layer 1 : Node {} Input vs Node {} Output” . format (j

+1, j +1))
74 ax2 . p l o t (t , V1 in [: , j])
75 ax2 . p l o t (t , va l)
76

77 ax2= f i g 1 . add subplot (gs1 [1 , j])

51

78 ax2 . p l o t (val , va l n)
79 ax2 . p l o t (val , val m)
80 ax2 . p l o t (val , va l h)
81 ax2 . s e t t i t l e (”Layer 1 Node {} Phase Po r t r a i t ” . format (j))
82

83

84 V1s . append (va l)
85

86 v1 = np . array (V1s) .T
87 V2 in = v1 @ weights2
88

89 # Pass inputs to 2nd l ay e r
90 V2s = []
91 f o r j in range (l 2 s i z e) :
92

93 val , va l n , val m , va l h= Vin to Vout (V2 in [: , j] , l ay e r2 [j])
94

95

96

97 ax2 = f i g . add subplot (gs [2 , j])
98 ax2 . s e t t i t l e (”Layer 2 : Node {} Input vs Node {} Output” . format (j

+1, j +1))
99 ax2 . p l o t (t , V2 in [: , j])

100 ax2 . p l o t (t , va l)
101

102

103 ax2= f i g 1 . add subplot (gs1 [2 , j])
104 ax2 . p l o t (val , va l n)
105 ax2 . p l o t (val , val m)
106 ax2 . p l o t (val , va l h)
107 ax2 . s e t t i t l e (”Layer 2 Node {} Phase Po r t r a i t ” . format (j))
108

109

110 V2s . append (va l)
111

112 v2 out = np . array (V2s) .T
113

114 #Pass inputs through f i n a l l a y e r
115 I f i n a l i n = v2 out @ weights3
116

117 i n pu t s t a t e = np . array ([0 . 0 , n i n f () , m inf () , h i n f ()])
118 r e s u l t s = ode int (d e r i v a t i v e s d a t a (I f i n a l i n) , s ta te , t)
119

120 I ou t= r e s u l t s [: , 0]
121

122 #Produce Fina l P lo t s
123 axf . p l o t (t , i npu t s i gna l , l a b e l = ” Input S igna l ”)
124

125 axf . p l o t (t , I ou t . f l a t t e n () , l a b e l = ’Network S igna l ’)
126 axf . s e t t i t l e (” Input vs Fina l Output”)
127

128 f i g . show ()
129

130 pr in t (params)
131

132

52

133 #produce f i n a l phase po r t r a in p l o t s
134 pp axf . p l o t (I out , r e s u l t s [: , 1] , l a b e l=’Vm − n ’)
135 pp axf . p l o t (I out , r e s u l t s [: , 2] , l a b e l=’Vm − m’)
136 pp axf . p l o t (I out , r e s u l t s [: , 3] , l a b e l=’Vm − h ’)
137 pp axf . s e t t i t l e (” Fina l Phase Po r t r a i t ”)
138 f i g 1 . l egend ()
139 f i g 1 . show ()
140

141 re turn (I ou t)

5.7 Appendix G: Parakh-Varanasi Neural Net

1 de f HH net loss (y true , y pred) :
2 pr in t (y t rue . shape)
3 pr in t (y pred . shape)
4

5 #ba t ch s i z e = weights . shape [0]
6 #mse = 0
7

8 I f i n a l s = HH tf (y true , t f . t ranspose (y pred) , l 1 s i z e= l 1 s i z e ,
l 2 s i z e=l 2 s i z e)

9 pr in t (I f i n a l s . shape)
10 #pr in t (i n pu t s i g . shape)
11

12 Y f i n a l = t f . c onv e r t t o t en s o r (y t rue)
13 pr in t (Y f i n a l . shape)
14

15 I f i n a l = t f . c onv e r t t o t en s o r (I f i n a l s)
16 pr in t (I f i n a l . shape)
17

18 mse = t f . keras . l o s s e s . MeanSquaredError (Y f ina l , I f i n a l)
19

20 re turn (mse)

6 References

Cordy, Benjamin. \The History of Electrophysiology." Grey Matters, Grey Matters, 25 Sept.

2021, https://greymattersjournal.org/the-history-of-electrophysiology/.

Fang, Xiaoyan, et al. \Memristive Hodgkin-Huxley Spiking Neuron Model for Reproducing

Neuron Behaviors." Frontiers in Neuroscience, U.S. National Library of Medicine, 23

Sept. 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496503/.

HODGKIN, A L, and A F HUXLEY. \A Quantitative Description of Membrane Current and Its

Application to Conduction and Excitation in Nerve." The Journal of Physiology, U.S.

National Library of Medicine, Aug. 1952,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/.

Hodgkin-Huxley Spiking Neuron Model in Python." Giuseppe Bonaccorso, 30 Sept. 2017,

https://www.bonaccorso.eu/2017/08/19/hodgkin-huxley-spiking-neuron-model-python/.

Hodgkin{Huxley Model." Wikipedia, Wikimedia Foundation, 23 Nov. 2022,

https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model.

The Ising Model." The Ising Model, https://stanford.edu/~jeffjar/statmech/intro4.html.

53

Ising Model." Wikipedia, Wikimedia Foundation, 5 Dec. 2022,

https://en.wikipedia.org/wiki/Ising_model#Historical_significance.

Ising Model." Wikipedia, Wikimedia Foundation, 5 Dec. 2022,

https://en.wikipedia.org/wiki/Ising_model.

The Physiological Society - Wiley Online Library.

https://physoc.onlinelibrary.wiley.com/.

V Fig. 1 Typical Membrane Circuit Containing Active Na and K Channels ...

https://pages.jh.edu/motn/coursenotes/nonlinear.pdf.

54

	Introduction
	Historical Background: Neurons
	Biological Background: Neurons
	The Hodgkin-Huxley Model
	Historical Background: Neuron Circuits
	Biological Background: Neuron Circuits
	Project Outline

	Hodgkin-Huxley Model implementation
	Implementation of the Full Hodgkin-Huxley Model
	Variation of Parameters in the Hodgkin-Huxley Model
	Input Stimulus
	Membrane Capacitance
	Potassium Conductance
	Sodium Conductance
	Potassium Reverse Potential
	Sodium Reverse Potential

	Parakh-Varanasi: Hodgkin-Huxley Neural Network
	Implementation of the Parakh-Varanasi Model
	Parakh-Varanasi Model Structure

	Input Pulses
	Gaussian Pulse
	Square Pulse
	Square Double Pulse
	Repeated Square Pulses

	Network Architecture
	3 x 3 Architecture
	3 x 5 Architecture
	5 x 5 Architecture

	Network Weights
	Uniform Weights
	Random Weights

	Complex Behaviour
	Gaussian Pulse
	Square Pulse
	Square Double Pulse
	Repeated Square Pulses

	Future Work: Neural Circuit Simulation
	Model Design
	Model Parameters

	Appendices
	Appendix A: Dependencies
	Appendix B: Hodgkin-Huxley Implementation
	Appendix C: Pulse Definitions
	Single Square Pulse
	Double Square Pulse
	Gaussian Pulse
	Repeated Square Pulse

	Appendix D: Sweeping over Parameters
	Appendix E: Plotting Example
	Appendix F: Parakh-Varanasi Implementation
	Appendix G: Parakh-Varanasi Neural Net

	References

