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1 Introduction

1.1 Problem
In response to the ever-increasing integration of personal electronics such as mobile phones,

laptops, and electric vehicles in people’s daily lives, public places are expanding the availability
of electrical outlets for their visitors. However, this expansion comes with a economic cost that
must be accounted for. In addition, different public destinations have unique characteristics, such
as hours of operation, distribution of visitors, and availability of outlets, which impact electricity
consumption throughout a day. Given the potential effects of increasing public charging of personal
devices, initiatives must be implemented to reduce the costs of such trends.

Simply put, our objective is to model the change in public electrical charging availability and
develop a model for the economic cost of this increase over the next decade in the United States.
We also aim to explore how this cost varies over different destinations and ways to reduce it.

1.2 Problem Analysis
With the rise of personal electronic devices and the corresponding need to charge them, users

are utilizing public charging stations more and more. Consequently, public places are faced with
the increasing demand and need to provide public charging stations for the public. However, the
increased energy consumption has required public places to install more outlets and resulted in
higher electricity bills. For instance, as part of the 907 million dollar expansion of Terminal 2
opened at San Diego International Airport, USB - enhanced power ports at every seat were added,
leading to the addition of more than 1600 in total [1].

Businesses and governments, thereby tax payers, are often the ones faced with the installation
fees for the charging stations and the higher electricity bill. The median cost of installing one
electric outlet is 193 dollars with a range from 148 to 200 dollars [2]. Electric vehicle stations
cost even more with Level 3 chargers costing around 100000 per station [3]. Fortunately, for some
electric vehicle charging stations, the government has offered rebates and incentives. In addition
to the ability to qualify for public level 2 rebate, states such as Alabama have given grants to create
charging stations. Similarly, California provides loans for the purchase and installation of charging
stations to customers [4].

Yet, despite the additional cost, the increasing number of electric charging stations have also
been found to have positive effects with places having a increased guest retention rates. The aver-
age guest stayed 17% longer at conventions and 14% longer at trade shows while guest engagement
rates increased by 12% at trade shows[5]. Theorizing that these results are applicable across the
board at coffee shops or other stores, the increased guest stay will lead to more goods being bought
and higher revenues for each destination. In addition, more charging stations help alleviate the
long waits at airports or the railway station. It also helps reduce the work on technicians and cus-
todians who have had to deal with moving chairs and unplugged machinery from people searching
for electrical outlets [1].

Keeping these factors in mind, when initially developing our model, we listed out the aspects of
the problem that we aim to address along with the sections in the paper where they are discussed:

• How has public outlet energy consumption changed, and how will it continue to change?
(Methods in Section 2.5; Results in Section 3.1)
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• What are the impacts on and requirements of public places with increased demands? (Section
1.2)

• What is the financial cost of increasing outlet availability? How is it paid? (Methods in
Section 2.3; Results in Section 3.2; Section 1.2)

• How does the model change for different types of public places? (Methods in Section 2.5;
Results in Section 3.1)

• What can be done to reduce the costs of public energy consumption? How do these changes
influence the model? (Section 4)

The quantitative questions to be addressed require a mathematical model that can predict eco-
nomic cost over a span of time, taking into account outlet availability as well as various factors
that capture the other differences between different types of public places [and allow us to explore
ways to reduce cost]. Thus, it is intuitive to create a model of cost where cost is a function of time
and depends on some other factors that, too, are time-dependent.

It is simultaneously known that the processes governing outlet availability on a location-by-
location basis form a complex system consisting of location specifics and the number, behavior,
and interactions of individuals within the location. To simulate such a random system, we choose
an agent-based model. Using both the cost function and the agent-based model, we aim to in-
tegrate large-scale changes in electricity parameters over time with small-scale human charging
behaviors to create a robust and accurate model to predict the cost of charging personal devices in
public places. Additionally, to model the workings and behaviors associated with electric vehicle
charging, we created an analytical model to understand the changing cost of public electric vehi-
cle charging based on parameters such as battery capacity and varying charger rates at different
charger stations.

2 Methodology
As explained above, our objective is to create a model to estimate the cost associated with the

use of public electric outlets for charging personal electronic devices over a ten year period specif-
ically for the United States. Using this base model, we plan to vary various factors to explore the
impacts of increases in public outlet availability in several common public destinations. Finally, by
analyzing our model’s results, we will propose initiatives and guidelines to reduce the detrimental
costs associated with the growth in energy demand associated with charging personal electronic
devices in public locations.

2.1 General Definitions
Public Spaces: Areas available to the general public that do not require specialized access. Ex-
amples include public squares, parks, beaches, libraries, coffee shops, airports, train stations, bus
stations, malls, movie, and rest stops.

Personal Electronic Devices: Non-commercial devices which require periodic charging to func-
tion, including laptops, mobile phones, tablets, radios, cassette players, portable digital assistants,
audio devices, watches with input capability, and reminder recorders.
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Destinations: Destinations are the different types of public places where a Visitor may consume
electrical power from an outlet. Our definition for each destination we evaluate is given below:

Airports: Public airports of any size (rather than private airports).
Coffee Shops: Sit-down coffee shops with seating (rather than drive-through or on-the-go
coffee shops located in larger businesses or institutions).
Railway Terminals: Only Amtrak Stations, which are official United States government
passenger railroad stations.
Libraries: Public libraries (rather than academic libraries, school libraries, special libraries,
Armed Forces libraries, and government libraries, since their public availability and use is
unclear).
Schools: Public secondary and post-secondary schools, as it is more likely that students at
these schools have devices to charge.
Shopping Malls: All malls open to the public, from strip malls to shopping centers.
Offices: Company offices, which are not available to the public.

Visitors: The people who go to each destination. For instance, for airports the visitors would be
the people boarding the airplanes.

Capacity: The total number of visitors a destination can hold at any given time.

Usage/Electrical Consumption: Amount of energy consumed by personal device charging, in
units of kWh.

Flybys: Visitors to a certain destination who do not sit/stay at the location for prolonged periods
of time. For example, at a coffee shop a flyby would visit, buy a coffee and leave, without charging
their devices.

2.2 General Assumptions
Assumption: The growth of number of US locations for each destination type of interest over the
next 10 years is negligible.

Justification: The % changes in number of US locations per year for Airports, Coffee Shops,
Railway Stations, Libraries, and Schools were found to be -0.5% (Appendix B3)[6], 0.56%
[7], 0.125% (Appendix B2)[8], 0.011% (Appendix B4)[9], and 0.0037% (Appendix B1)[10],
respectively. All of these values are too small to be of significant impact in our model;
therefore, growth in number of locations can be safely ignored.

Assumption: Population growth over the next 10 years is inconsequential.
Justification: US population growth has stagnated to 0.62% per year, equating to a 6%
growth in 10 years [11]. While this percentage is not insignificant, a majority of the growth
can be attributed children under the age of 10 who generally do not have personal devices
and thus do not contribute to our model.

Assumption: The weekday operational hours are a reasonable estimate for the operational hours
throughout the week.
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Justification: While there may be different operational hours during the weekend compared
to the weekday, there are more weekdays and it can act like a good approximate for the
weekend operational hours. The difference is negligible in the long run.

Assumption: Percentage of the population with personal electronic devices (excluding electric
vehicles) does not change over a ten year period.

Justification: As discovered by the Pew Research group, personal electronic devices, specif-
ically phones, laptops and tablets have reached market saturation and as such there has been
no growth in recent years [12].

Assumption: Electric efficiency will remain constant over the next 10 years.
Justification: Since we are only projecting and thereby concerned about the next ten years
of electricity consumption and cost, we can reasonably assume that there will be no extreme
innovations in electric efficiency to have a non-negligible effect on our model.

2.3 General Cost Model
To model the growing cost of public electricity consumption for personal devices (C ($)) over

time, we split C into two factors: commercial price of electricity per kilowatt hour (P ($/kWh))
and total electricity consumption for personal devices in the public commercial sector (U , kWh).
Thus, the equation governing our cost model is

C(t) = P(t)∗U(t) (1)

P(t) is a relatively straightforward function of time that can be derived from data and is dis-
cussed in Section 2.4. On the other hand, total electricity consumption by only personal devices in
public locations U(t) is complex and depends on interactions between visitors and charging spots
in a destination on a small scale. Thus, the agent-based model will be used in the calculation of U ,
which will be fed into Equation 1 to produce cost.

2.4 Commercial Electricity Price
To determine the change in commercial electricity price P over the years, we analyzed electric-

ity prices from 2001 to 2018 in cents per kilowatt hour (¢/kWh) from the US Energy Information
and Administration (See Appendix A1) [13]. From a general practical understanding of trends in
electricity use, a logarithmic regression is the most fitting. Specifically, the price of electricity has
increased due to the cost of implementing infrastructure to support increased electricity demands.
Over the years, as the necessary infrastructure is constructed, the change in the price of electricity
has decreased, and thus price increases at a slower and slower rate.

The trend of commercial electricity price fitted to a trendline of Price = 359.06 ∗ lnyear−
2721.2. Using this projected trend, the future price of electricity was calculated (Table 1) By 2028,
the commercial price of electricity is expected to reach 12.97 ¢/kWh.
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Year Commercial Price of Electricity (¢/kWh) % Change in Price
2019 11.37500643 —
2020 11.55280292 1.563045164
2021 11.73051141 1.538228366
2022 11.90813199 1.514175948
2023 12.08566475 1.490853143
2024 12.26310978 1.468227261
2025 12.44046715 1.446267537
2026 12.61773697 1.424944991
2027 12.79491931 1.404232297
2028 12.97201425 1.384103673

Table 1: The forecasted commercial price of electricity from 2019 to 2028 with % change in price
between years.

As seen from Table 1, the percent increase in commercial price of electricity year to year is
around 1.45% in the next 10 years. While the residential price and commercial price of electricity
are not directly proportional, the US Energy Information Administration projected the residential
price of electricity to increase 0.8%-1% from 2019 to 2020[14], indicating that our estimation
produces reasonable values.

2.5 Personal Device Agent-Based Usage Model
This model produces U , the total electricity consumption for personal devices in the public

commercial sector. We quantify the amount of electrical consumption from public charging outlets
for personal electronic devices at each destination and how the energy consumption changes over
time.

Since outlet usage at a destination is inherently contained within a system of randomly inter-
acting components, we develop a computational agent-based model using the NetLogo language
to describe the relationships between visitors and the availability of outlets. Our model represents
a single instance of any destination (e.g., a single coffee shop) by an arrangement of outlet and
non-outlet seats (Figure 3). Throughout the course of a ”day”, a certain number of visitors “enter”
the destination according to a visitor influx distribution. A visitor may own any subset of mobile
phone, laptop, tablet (including the empty set) with devices probabilistically assigned according to
their prevalence within the general population.

For each device, a random initial battery level is assigned based on the tendency that devices
have less battery later in the day due to use. Each visitor with at least one device chooses an
available seat (favoring outlet seats) and stays for a random duration while visitors with no devices
represent flybys who do not go to a destination to use devices (e.g., people at a coffee shop who
simply grab coffee and go). Each device type has a constant battery drainage and charge rate;
at each “tick” of the model, every device drains, and the device with minimum battery for every
visitor at an outlet seat is charged (unless all devices are at 100%). A visitor leaves their seat
when either 1) their stay duration expires or 2) they run out of battery (0%) on any one of their
devices. The seat numbers and outlet ratios, total visitors, visitor influx distribution, and visitor



Team 10174 Page 6 of 20

stay duration are all destination-dependent and calculated from available data and statistics, which
are detailed in the sections following the assumptions.

Figure 1: NetLogo Model Flowchart. Components are detailed in the following sections after
assumptions

(a) During the morning rush hour (b) Later in the day

Figure 2: NetLogo model for Coffee Shop. Green seats have outlets, while blue ones do not. White
text displays remaining battery levels and remaining duration in destination.
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2.5.1 Agent-Based Model Assumptions

Assumption: Shopping malls, parks, beaches, movie theaters, rest stops and offices have a negli-
gible amount of public charging, and consequently an insignificant cost.

Justification: People do not stop to charge their personal devices while they are shopping
since they are constantly moving and there are not many outlets publicly available. Addi-
tionally, offices, as defined in General Definitions, are not available to the public, so there
is no possibility of public charging. For parks and beaches, there are no available charging
outlets. Finally, for movie theaters and rest stops, despite the presence of available charging
outlets, the time spent charging is largely negligible because people have little time to do so.

Assumption: Charging in airports only occurs while passengers are waiting at boarding/departure
gates. Similarly, charging in railway stations only occurs at platforms while passengers are waiting
to board trains.

Justification: People are in transit at all other locations in an airport/railway station. There-
fore, the only time travelers have to charge personal devices is when they are at gates or
platforms.

Assumption: The number of Canadian Amtrak riders and stations are negligible.
Justification: Of the total 526 Amtrak stations in North America[8], only 9 stations are
located in Canada [15]. This accounts for only 1.71% of total Amtrak service which is a
negligible proportion for our calculations.

Assumption: At a school, students usually arrive between 7 and 7:30 am. There is a inconse-
quential amount that arrive/leave school throughout the middle of a school day for appointments
or other obligations

Justification: Since the average U.S. public school day begins at 7:59 am, all students will
arrive between 7:30 am and 8 am[16]. This assumption ignores tardy arrivals and slight
variations in student attendance over the course of a day, which are both proportionally neg-
ligible.

Assumption: The population of teachers is negligible when compared against the student popula-
tion in a school.

Justification: The average student to teacher ratio in the American Public School system is
16 students to 1 teacher[17]. Since teachers account for less than 6% of the total population
in the school, it can be relatively safely assumed that students account for the vast majority
of electricity usage for personal electronics in schools.

Assumption: The only devices that will be charged at a public place are a mobile device, laptop,
or a tablet.

Justification: As concluded by the Pew Research Center in June 2019, nearly 77% of the
American adult population have phones, 74% have laptops, and 53% have tablets. Other
personal devices, including radios, CD, smartwatches, and E-readers are owned by less than
25% of the population and are not usually charged in public commercial destinations, making
their impact on our model inconsequential[18].

Assumption: Before noon, the percent of battery someone initially walks into a destination is a
random value between 50% - 100%. After noon, the percent of battery is a random value between
25% - 75%.

Justification: As the day progresses the battery of someone’s devices decreases as they are
being used more.
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Assumption: The time it takes to charge the battery of a personal device is linear throughout the
entire charging process, e.g. charging from 5% to 6% is the same amount of time from 90% to
91%.

Justification: According to Electropedia, the charging percentage vs voltage of a typical
lithium ion battery (common phone battery) is relatively linear in all stages except for the
very beginning and end stages of charging [19].

Assumption: A visitor will use all of their devices for the full duration at a destination.
Justification: This justification is used to simplify our model and is based on the fact that
in an increasingly connected world, multiple devices are often used in conjunction for multi-
tasking. Furthermore, devices consume power even when not being directly used.

Next, we describe the definitions and calculations of several important variables that change be-
tween destinations. The ways in which the various factors change here represent our answer to
how the model changes for different destinations.

2.5.2 Capacity and Size of Destination

The average capacity determines the maximum amount of people at a given destination at the
same time. As capacity is dependent on the layout of each individual destination, we estimated
average capacity. When lacking sufficient data, we calculated capacity based on the approximation
that there is 1 seat for every 36 ft2 [20]. Please reference [WHICH APPENDIX] to view the
derivations for each destination’s average capacity number.

Destination Average Capacity Number Square Foot
Airports visitors 2,709 97,541

Coffee Shops 50 - 70 guests on average 1000 - 1750
Railway Stations 70 Visitors 2534

Schools — Students 173,727
Libraries 600 people 21,500

Table 2: The average capacity number and square foot for each destination

2.5.3 Public Outlet Density

To determine how cost changes in relation to an increase in the number of publicly available
outlets, we created a measure called public outlet density (POD) that gives the number of square
feet per 1 outlet available to the public.

Additionally, we wanted to find the ratio between the number of outlets that existed with a
certain public destination and the number of seats that existed. This saturation of seats with outlets
was thought to be a well-off metric of what a public destination might strive to increase and an
easy-to-understand value. The number of seats that are in an establishment was determined to
be its square footage divided by 36 sq. ft./person as this is the square feet for an occupant to fit
comfortably in an establishment.

sq. f ootage
pod

sq. f ootage
36

=
outlet
seat

ratio (2)
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In our agent-based model we varied the POD value as we believed that public destinations
would strive to increase this value, thus making more outlets available to the public. To find
bounds in which to vary POD we looked at the outlet

seat ratio. A 1 to 1 ratio for number of outlets to
seats would be optimal and thus we found the POD value that would produce this ratio, 1

36 , and set
this to our upper bound. However, this upper bound was then decreased for Airports and Schools
because it would be impossible (and undesirable in the latter case) to install so many outlets. On
the other hand, a 0 to 1 ratio is least optimal. This gives a range of 0 to upper bound, between
which 3 more evenly spaced POD values are evaluated; in order, the 5 levels for POD are named
zero, low, low-mid, mid-high, and high. Note that low-mid is twice the density of low, and high
twice the density of low-mid.

2.5.4 Destination Attendance over Time

Energy consumption of a particular destination was thought to be reliant on the number of that
particular destination in the United States as well as the average number of people (v) that go to
these destinations (d) per day. Because these two attributes are inherently correlated, we deemed
it necessary to incorporate them into one variable describing the number of people per destination.

To understand how this value changes over time, we differentiated it producing the equation:

d
dt
(

v
d
) =

dv
dt
∗ 1

destinations
− dd

dt
∗ 1

destinations2 ∗ v (3)

Looking at (site assumption) , we see that the change in the number of a particular destination
is insignificant and thus can be reduced to 0. This makes our differential equation completely
dependent on the first term as the second one reduces to 0.

dv
dt

=
%∆∗destination visitors

year
∗ v

Integrating this gives us the equation below where I is our initial value of people per destination.

v
d
= Ie% change ∗ t (4)

Through our research, we were able obtain % change values for the number of attendees of a
particular destination. For secondary schools, the % change followed a piecewise function meaning
the % change value projected to be constant from 2016 to 2023 and then change to another value
that would stay constant from 2023 to 2028.

2.5.5 Visitor Influx Distribution

To develop a distribution function describing the density of people that come at a certain time at
which a destination is operational, we researched the”peak” hours of every destination based on the
Google Popular Times. In order to determine Google Popular Times, Google uses aggregated and
anonymized data from users who have opted in to Google Location History and the popular times
are based on the average popularity over the past several weeks[21]. Popular times correspond to
the relative number of visitors who came to the destination which we can define as visitor influx.

We looked at multiple locations across the United States to ensure that the trends in popularity
were not influenced by regional differences. Figure ?? describes one of such data points for the



Team 10174 Page 10 of 20

Los Angeles International Airport. Looking at airports across the nation, we noticed that airports
tend to follow a bimodal distribution with peaks around 11 am and 8 pm.

(a) L.A. International Airport Distribution

(b) Normalized Airport Distribution Function

Figure 3: The influx distribution and normalized airport distribution function of the L.A. Interna-
tional Airport.

Once we collected visitor distributions of each destination, we devised quintic and quartic fits
to describe this distributions of people throughout the day by utilizing specific data values of time
and number of people. We then normalized these distribution curves for any location of a specific
destination by ensuring that the trapezoidal Riemann sum of the function was equal to 1. By doing
so, we created a probability density function so that we could calculate the percentage of total
visitors arriving in a given time period.

For example, in the Airport distribution of the L.A. Internal Airport shown above, the area
under the curve between 3 and 4 am can be calculated to be 0.0188, so approximately 1.88% of
the total visitors come in this time frame.

t2−t1
2

∑
n=1

f (xi)+ f (xi+1)

2
∗ 1

2
= normalization f actor (5)

The process of normalization was undertaken by performing a trapezoidal Riemann sum for our
quintic functions (for each destination) using the hours that a particular destination is operation as
our bound and a 30 minute interval. The function was then divided by the value of the Riemann
sum (normalization factor) as to make the new Riemann sum value 1 while maintaining the x-
intercepts of the function.

For the equation above t2− t1 is equal to the working hours of a destination divided by 2 for
the number of 30 min interval that this time span contains. Note that all students at a school come
in from 8:00 - 8:30 as noted in our assumptions.

Destination Working Hours
Airport 24 Hours

Coffee Shops 04:00 - 16:00
Railway Stations 24 Hours

Schools 08:00 - 15:00
Libraries 09:00 - 18:00

Table 3: Working Hours of each destination.
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This normalization is important as then at every 30 minute interval our model is able to retrieve
a certain density from our normalized equation and then multiply this by the average number of
visitors for a particular destination, thus giving us the number of people that would visit within the
specified 30 minute interval. The calculated number of people that would visit within a specified
30 minute interval was rounded and then they were randomly distributed across the 30 minute
interval.

Destination Normalized Visitor Influx Distributions
Airport y = 1

36.648(−6.991+4143x−0.7746x2 +0.06206x3−0.002372x4 +0.00003342x5)

Coffee Shop y = 1
28.395(109.8−72.36x+17.47x2−1.932x3 +0.09991x4−0.001963x5)

Railway Station y = 1
36.648(−6.991+4143x−0.7746x2 +0.06206x3−0.002372x4 +0.00003342x5)

School y = 2

Library y = 1
14.307(−208.4+64.58x−7.340x2 +0.3651x3−0.006703x4)

Table 4: Normalized Visitor Influx Distributions for each destination.

2.5.6 Device Assignment

Based on research, we found the percentage of US adults that have a mobile phone, laptop, or
tablet, as per our assumption regarding personal devices. These probabilities were implemented
within our NetLogo model, as when a visitor enters the destination, they are either assigned a
possibly empty subset of mobile phone, laptop, and tablet based on the probabilities. If a visitor is
assigned no devices, they are considered a “flyby” meaning that they are at a particular destination
for purely commercial reasons and will not be sitting down to charge their device. The probability
that someone had a mobile device is 0.77, laptop is 0.73, and tablet is 0.53.

2.5.7 Battery Life

Additionally, every device type (mobile phone, laptop, and tablet) was assigned its own lin-
ear rate of battery drainage and charging (in % per min). Every minute in the simulation, every
device of every visitor drains, and for the visitors at an outlet seat, their lowest-charged device is
also charged (unless all devices are at 100% battery, in which case no charging and no electrical
consumption occurs).

Drainage rate (de
dt ) was derived from each device’s average battery life . Charging rate (dc

dt )
was derived from the electrical capacity of each device’s battery as well as the electricity that each
device’s charger can intake from an outlet per minute.

de
dt

=
100%

device avg.battery li f e (min)
(6) dc

dt
=

100%
device battery capacity (kWh)

device charge rate( kWh
min )

(7)
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2.5.8 Duration of Stay

Table 5 displays the range of time that an average US visitor will spend at a destination; each
visitor is assigned a random duration of stay within the range. These values influence the time
spent charging personal devices.

Note that airport and railway station waiting time does not include time spent in the security
line because of our assumption that nobody charges their phone while waiting in the security line.

Destination Range of Stay Duration
Airports 1 hour - 3 hours

Coffee Shops 1.12 - 3.4 hours
Railway Stations 30 - 45 minutes

Schools 6.5 hours
Libraries 0.65 - 1.42 hours

Table 5: The range of time an average visitor spends at each destination

2.6 Electric Vehicles Energy Usage Model
With the rise of electric vehicles (EVs) over the past couple of decades, electric vehicles are

a common occurrence used by people and considered a personal device. However, due to distinct
differences between electric vehicles and other personal devices such as mobile phones or laptops,
we considered their factors separately. A computational Python model was created in order to
analytically calculate the EV electricity consumption and its dependence on time.

0.3∗battery capacity∗outlets = daily EV electricity consumption (8)

0.3∗battery capacity represents the amount of energy it takes to charge an EV battery by 30%
per one outlet. An average battery capacity of 58.8 kwh for electric vehicles was used in order to
simplify our model. This resulting number is then multiplied by the number of available public
outlets to find daily EV electricity consumption. This equation was restricted by the amount of
charging that could occur in one day by summing up the time a charge would take.

0.3∗ battery capacity
charger wattage

= charging time (9)

Once a 24 hour limit was reached, a day was ended, and a new day would start until a 365 day
cycle was completed. This process was done for multiple years.

2.6.1 Electric Vehicles Based Assumption

Assumption: An owner of an electric vehicle charges their car once a day
Justification: Since electric vehicle charging is cheap and common, owners tend to charge
their car once a day, similar to phones, to prepare for the next day.

Assumption: Charging stations are always being used.
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Justification: Due to the high frequency of electric vehicles, low number of charging sta-
tions, and long time to charge, charging stations are always occupied.

Assumption: 20% of all charging for electric vehicles are done at a public charging station.
Justification: According to the Office of Energy Efficiency and Renewable Energy, ”electric
vehicle drivers do more than 80% of their charging at home” [22] due to the low, stable
residential electricity rates.

Assumption: Location of types of electric vehicle charging stations are randomly distributed
across the country.

Justification: In order to simplify our model, the concentration of electric vehicle charging
stations in locations such as California was ignored [23].

Assumption: An electric vehicle charges 30% their battery when at a public charging station.
Justification: An average EV battery can handle 100 miles [24] and thus 30% of this allows
a person to drive 30 miles. We deemed this a valid amount at a public station as an average
person’s work commute is 30 minutes[25] and 30% would be plenty to get home where they
can charge their car.

2.6.2 Electric Vehicle Charger Types

There are three different type of electric vehicle charges: DC fast, Level 1, and Level 2. Each
is able to charge at various voltages and currents, thus charging vehicles at different rates. Our
chosen unit was kW as our metric for measuring EV battery capacity was kWh.

Charger Type Volts kW Relative Amounts
Level 1 120 1.44 5.4%
Level 2 240 9.6 79.7%
DC Fast 480 45 14.9%

Table 6: Charging intensity of various EV charger types [26].[27].

2.6.3 Electric Vehicle Count

The electric vehicle industry is booming and thus the rate at which electric cars on the road
within the United States is increasing rapidly. By running different kinds of regressions on the data
found for the number of electric cars in the US over time, we were able to produce the quadratic
equation 18,590t2− 418,483t + 2 ∗ 106 with a coefficient of determination of 0.9947 [28]. This
equation is able to model the number of electric vehicles on the road in the US t years after 2000,
as electric vehicles weren’t substantive enough to contribute to electricity consumption pre-2000.

2.6.4 Electric Vehicle to Outlet Ratio

A meaningful metric to consider when looking at the demand for public energy consumption,
is the electric vehicle to outlet ratio. Similar to the previous section, various types of regressions
were run for data over time for this ratio [28] and produced the quadratic equation 0.1247t2 +
0.6053t +5.5952 with a coefficient of determination of 0.9776.
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3 Results and Analysis

3.1 Electrical Consumption Results
We run the NetLogo simulation 100 times for each combination of Year and Public Outlet

Density and plot the mean daily electrical consumption (Figure 4). Note that outlet density of 0 is
not plotted as 0 outlets necessarily results in an electrical consumption of 0.

(a) Airports (b) Coffee Shops

(c) Railway Stations
(d) Schools

(e) Libraries

Figure 4: The forecasted daily electrical consumption (kWh) from 2018-2028 for different public
outlet densities (colors) for each defined destination (a-e).

Several trends are revealed in these graphs. First, all trends generally follow trends in number of
visitors over the years, which makes sense. Electrical consumption in Railway Stations and Coffee
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Shops increases as more visitors come to these destinations. Libraries experience a decrease in
electrical consumption, and Airports and Schools remain relatively constant, again reflecting the
visitor data. Secondly, Railway Stations and Libraries do not depend greatly on the public outlet
density. This is because even under the lowest density, all visitors to each of these destinations has
outlet access. For railway stations this is due to the low daily visitors, and for libraries is due to the
general high availability of outlets. A similar effect is observed with only the highest two densities
in both Airports and Coffee Shops; this means that for airports, a public outlet density of 3 outlets
every 576 ft2 is the minimum threshold at which every visitor throughout the day is guaranteed
outlet access, and for coffee shops the same occurs at 3 outlets every 144 ft2. For libraries, it
is interesting to observe the great variability in daily electrical consumption; this is attributable
to the visitors being condensed in the short working hours, which the random agent-based model
simulated well. Schools showed a clear separation between each public outlet density, showing that
even at a relatively high outlet availability, the school cannot provide an outlet for every student,
which makes practical sense.

3.2 Cost Results

(a) Low POD (b) Low - Mid POD

(c) Mid - High POD (d) High POD

Figure 5: The total projected electricity cost from public charging stations for the years 2018 -
2028, separated by the Public Outlet Density.

To go from per-day kWh for each destination to total annual costs, we multiplied by 365 days
and used Equation 1 to generate Figure 7. As years go on, due to increasing numbers of visitors
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to each destination, cost also increases slowly. More drastic increases in cost, from $150,000 to
$500,000, are observed as POD increases from the Low to High setting. Additionally, it is clear
that in all cases, School and Airport are the two destinations with the highest total annual cost.
This is attributable to the large number of Schools in the US and the high number of visitors to
each airport. Coffee Shops, Libraries, and Railway Stations contribute much less to the overall
electrical cost of personal device charging. In fact, as POD increases, large contributors to cost are
made even larger contributors; under High POD, Schools contribute to about 80% of total annual
cost.

(a) Low POD (b) Low - Mid POD

(c) Mid - High POD (d) High POD

Figure 6: The projected electricity cost from public charging stations for the years 2018 - 2028 for
each individual destination, separated by the Public Outlet Density.

In addition to analyzing total annual cost from all destinations, we also investigate annual cost
per individual location of each destination, e.g. how much money a single coffee shop expends
on providing personal device charging per year 6. Schools and Airports remain the highest-valued
destinations, but Airport is now greater than School because each individual School does not ex-
pend as much as each individual Airport, which has many more people per day. Again, cost
increases over time and increases with POD as well, except in the cases discussed in Section ??
where electrical consumption does not increase with POD. Overall, cost per destination increases
by a factor of 2-3 from the low to high POD setting.
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3.3 Electric Vehicle Cost Analysis

(a) Energy Consumption and EV to Outlet Ratio
(b) EV Energy Consumption Cost

Figure 7: The projected energy consumption, electric vehicle to outlet ratio, and cost for electric
vehicles for the next 10 years.

As per seen through our graph, our computational model was able to predict the yearly con-
sumption of electricity from public charging of electric vehicles. This data was seen to be quite
accurate when compared to known data for yearly consumption of electricity for EV. For the year
2018 our model predicted a public electricity consumption of 0.618 TWh. 2.85 TWh of electricity
were consumed in total for electricity cars, but it’s important to note that only 20% of charging
is actually done at public charging locations [22] which provides us with a value of 0.57 TWh of
electricity consumed through public charging.

The graph above also shows a clear trend of the increasing cost in electricity consumption
as time progresses which is most likely attributed to the rapidly increasing number of EVs and
the demand for charging. Additionally, the electric vehicle to outlet ratio is also increasing over
time but at a faster rate. Theoretically, if the vehicle to outlet ratio was able to decrease then the
consumption of electricity by electric vehicles would be able to increase faster since the additional
outlets could also become saturated.

3.4 Strengths
Our model is robust with nearly all inputs in the model and destinations statistically based

on real-world data from trusted websites and governmental agencies such as the Department of
Energy and U.S. Energy Information Administration. With the large data set of information we
accumulated, our agent-based model accounts for a number of factors that determine electricity
consumption, such as availability of outlets depending on the influx of visitors to a destination
over time, to the change in the number of destinations in a category over a series of year.

Additionally, our agent-based model for usage allows accurate representation of the inherent
random interactions present within any system. We can run a large sample size of 100 trials for
every combination of outlet density and year, giving an accurate estimation of the expected cost of
energy consumption.
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Our time-based equation allows us to take into account how factors will change over time. For
instance, the number of visitors that go to libraries will decrease in the future as people convert
more to electronic reading devices.

Finally, one of the most unique aspects of our model is the ability to take account the varying
characteristics of each destination and develop a model specifically for each destination and public
outlet density. Rather than give a generalized cost due to public electric consumption over the years
based on the average destination characteristics, we are able to specify the inputs. For example, the
visitor influx distribution of a school is a constant with all visitors, otherwise known as students,
coming at the beginning of the day and not leaving. On the other hand, in a coffee shop, visitors
may come variably throughout the day with a peak during breakfast and lunch hours.

3.5 Weaknesses
Our model was designed using information from the US and is not easily applicable to other

countries. For instance, since the US is one of the most developed countries in the world, it has a
majority of the necessary infrastructure needed for the transmission of electricity. Consequently,
we are able to model the commercial price of electricity change for the next 10 year as a logarithmic
function. On the other hand, the commercial price of electricity may be significantly higher and
increase faster for a developing country such as Albania.

Moreover, in our research to back our data, there was an inconsistency in sources for related
pieces of information due to specificity of information needed for different inputs. However, they
are still a good estimate.

Our model only considers certain public spaces as defined in General Definitions. While this
assumption was based on sound justifications, the sum of negligible contributions towards the cost
of charging personal devices in public could impact our model.

Our model likely overestimates electrical consumption because in reality, a large proportion of
visitors to a coffee shop, for example, would be flybys who only intend to grab coffee.

Finally, the agent-based model does not take into account that most outlets in the US are paired,
nor the possible impacts of tables with multiple seats or visitors arriving in groups. However, the
model is still a good representation of the effects of limited and increasing outlets in a destination
with non-uniformly arriving visitors.

4 Suggested Guidelines (Initiatives, Requirements)
As our model has shown, in the coming years, as public places continue to increase outlet avail-

ability and demand for electricity continues to grow, electricity consumption will only increase. To
combat this increasing cost, several measures can be taken to improve device efficiency and reduce
associated costs for public places.

Specifically, battery life can be greatly improved through research in more efficient batteries
and improved battery usage through the further development of charge recovery and low battery
algorithms. Researchers across the world are currently tackling this problem with advances in
Sodium and Potassium based batteries [29], and nanolithia cathode batteries[30] creating new
batteries with increased charging capacity and energy efficiency. Energy efficiency can also be im-
proved through the improvement of individual components within each device will bring down the
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total energy consumption of the device. For example, the optimization of energy consumption for
hardware such as monitors, CPU’s and interfaces, will improve energy efficiency. Our model al-
lows for these adjustments through the draining and charging rates of individual devices described
in Section 2.5.7.

Additionally, individual destinations may implement restrictions on the availability of charging
outlets to reduce the cost associated with charging personal devices. In doing so, our model predicts
the cost of electricity to decrease as a result of fewer outlets for visitors to use. Our model allows
for this adjustment with variation in the POD or public outlet density described in Section 2.5.3.

Furthermore, with the integration of electric vehicles into mainstream automobiles, it is essen-
tial to improve the car battery efficiency. One of such ways is the implementation of silicon based
electrodes which have an increased capacity of almost 20 times the value for current lithium-ion
based batteries. Implementations of these devices in the future will, reduce charging necessity and
increase battery efficiency [31].

All of these future implementations will alter our model; however, given our robust model, only
slight changes must be made to account for these changes in the coming years. For example, to
account for increased battery efficiency, our model would change the rate of depletion of charge as
it is being used, the rate of battery replenishment, and the ranges for initial battery charge. These
variables would need to be altered because with higher efficiency batteries, less charge is lost in a
given unit of time leading to lower rate of depletion, and a higher range of initial battery charge. By
accounting for these adjustments, our model would predict would decrease in total cost associated
with charging personal devices in public areas.

Finally, our model reveals an interesting pattern: decreasing public outlet availability is no use
in reducing cost if a destination’s visitor influx is so sparse that everyone will be able to use an
outlet. In these cases, only other initiatives like increasing battery efficiency would effectively
reduce costs.

5 Conclusion
As our world becomes more and more connected, personal electronic devices from phones

and laptops to electric cars are becoming increasingly prevalent. A rise in electricity demand has
accompanied the growth in personal electronic devices, creating a demand for charging stations
and outlets. Public locations have recently began to satisfy the demands of public consumer needs
by increasing the number of electrical outlets available to the public. In our model, we modeled
growth by estimating the costs incurred by governmental and private business when fulfilling this
demand by integrating an agent-based model and algebraic model. Since each location within the
larger subset of public destinations is inherently different with regard to visitation hours, number
of visitors, duration of stay, capacity to hold visitors, and number of destinations, we created a
model to incorporate each of these factors.

By measuring the cost of electricity over a ten year period at various public locations, we were
able to find that over time, the total cost of charging of personal electronic devices in public areas
increased. We noticed that for airports and schools, there seemed to be insignificant growth in
electrical consumption, and for railway stations and coffee shops we found that energy consump-
tion increased; however, we also found that library consumption will decrease over time. These
trends closely aligned with data we found regarding the change in visitors over time. To model
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increases in the number of public outlets available, we ran our model with varying public outlets
densities and found that for railway stations and libraries, variation of public outlets showed very
little impact since almost all visitors had access to outlets regardless of the density. At a low outlet
density we found an electricity cost for personal devices to grow from $150,000 to $180,000 over
a ten year period. On the other hand, for high outlet density, we determined a price change from
$450,000 to $525,000 per year over the same period. However, for electric vehicles, we estimated
a cost change from $50,000,000 to $400,000,000 per year between 2018 and 2028. For Airports
and Coffee Shops, we deduced an ideal public outlet density of 3/ 576 ft2 and 3/144ft2 respectively
to ensure each visitor had access to at least one outlet. When comparing total cost due to energy
consumption of all public destinations defined in our model, we noticed that a majority of the con-
tributions originated from Schools and Airports. This is likely due to the relatively vast number
and visitor volume of schools and airports in comparison to other public areas. These destinations’
contributions continued to increase as public outlet density increased, indicating that each of these
destinations were more reliant on outlet density than the others. However, per-location, airports
have the highest annual cost due to the large visitor volume.

Another increasingly prevalent electric cost associated with personal devices is the charging of
electric vehicles. Our model for electricity consumption of elect vehicles was found to very closely
resemble existing data as it was able to predict electricity consumption of publicly charged electric
vehicles within 0.048 TWh. We also saw that electric vehicle energy consumption will continue to
increase linearly as a function of time.

While these costs are expected to increase in the coming years, action can be taken to reduce
the cost sustained from offering ”free” charging services at public locations. One such way is the
restriction of the availability of outlets to the public. As can be seen in Figure 7, as POD decreases,
cost of electric charging drastically decreases with a difference of nearly around $200,000 between
our low and high POD metrics. Another possibility to reduce costs associated paying for electricity
is the implementation of new technologies into the market. Specifically, new batteries such as
sodium and potassium based batteries that have increased charge capacity, efficiency, and charging
capabilities. While this may not occur in the ten year scope of our model, its impacts reducing
the cost of electricity can easily be modelled through the implementation of an energy efficiency
factor.
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Appendices
A Commercial Price of Electricity

Year Price (¢/kWh) % Change
2001 7.92 –
2002 7.89 -0.37878
2003 8.03 1.774397
2004 8.17 1.743462
2005 8.67 6.119954
2006 9.46 9.111880046
2007 9.65 2.00845666
2008 10.26 6.321243523
2009 10.16 -0.974658869
2010 10.19 0.295275591
2011 10.24 0.490677134
2012 10.09 -1.46484375
2013 10.26 1.684836472
2014 10.74 4.678362573
2015 10.64 -0.93109869
2016 10.43 -1.97368421
2017 10.66 2.205177373
2018 10.67 0.09380863

Table A1: Commercial price of electricity (¢/kWh) 2001-2018, with % change between years
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B Number of Destinations over the year

B.1 Public Schools

Year Number of Public Schools Percent Change
2005 26,011 –
2006 25,929 -0.3152512399
2007 26,647 2.7691002353
2008 26,345 -1.1333358352
2009 26,640 1.1197570697
2010 26,559 -0.3040540541
2011 26,368 -0.7191535826
2012 26,275 -0.3527002427
2013 26,047 -0.8677450048
2014 26,145 0.3762429454
2015 26,005 -0.5354752343

Average 0.0037385057

Table B1: Number of Public Schools and accompanying percent change over an eleven year period
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B.2 Railway Stations

Year Stations % Change
2000 515 –
2001 512 -0.58252427
2002 515 0.5859375
2003 514 -0.19417476
2004 529 2.91828794
2005 531 0.37807183
2006 510 -3.95480226
2007 508 -0.39215686
2008 510 0.39370079
2009 511 0.19607843
2010 512 0.19569472
2011 511 -0.1953125
2012 512 0.19569472
2013 516 0.78125
2014 518 0.3875969
2015 521 0.57915058
2016 525 0.76775432
2017 527 0.38095238
2018 526 -0.18975332

Table B2: Number of Railways over an eighteen year period and accompanying percent changes
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B.3 Public Airports

Year Public Airports % change
2000 5,317 –
2001 5,294 -0.43257476
2002 5,286 -0.151114469
2003 5,286 0
2004 5,288 0.037835793
2005 5,270 -0.340393343
2006 5,233 -0.702087287
2007 5,221 -0.229313969
2008 5,202 -0.363914959
2009 5,178 -0.461361015
2010 5,175 -0.057937428
2011 5,172 -0.057971014
2012 5,171 -0.01933488
2013 5,155 -0.309417908
2014 5,145 -0.193986421
2016 5,136 -0.174927114
2017 5,104 -0.62305296
2018 5,087 -0.3330721

Table B3: Number of Public Airports in the United States of America over an eighteen year period
and accompanying percent changes



Team 10174 Appendices

B.4 Public Libraries

Year Number of Public Libraries % Change
2000 9074 0.309529074
2001 9129 0.606127397
2002 9137 0.087632818
2003 9211 0.809893838
2004 9207 -0.043426338
2005 9198 -0.097751711
2006 9208 0.108719287
2007 9214 0.06516073
2008 9221 0.075971348
2009 9225 0.043379243
2010 8951 -2.970189702
2011 8956 0.05585968
2012 9082 1.406878071
2013 9070 0.099097115
2014 9070 -0.23099769
2015 9068 -0.022050717
2016 9057 -0.12130569

Table B4: Number of Libraries over a sixteen year period and accompanying percent changes
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C Airport Terminal Data

Table C1: A listing of the medium sized airports in the United States and their number of terminals

Airport Terminal Num-
ber

Atlanta 206
Chicago O’Hare 182
Dallas DFW 161
Detroit DTW 147
Denver 136
Washington
Dulles

135

Houston Bush 130
New York
Newark

129

Minneapolis 127
Philadelphia 126
New York JFK 125
Miami MIA 123
Toronto 122
Phoenix 116
Los Angeles
LAX

112

San Francisco
SFO

108

Las Vegas 103
Orlando Int’l 96
Charlotte 95
Baltimore-
Washington

84

Vancouver 81
Salt Lake 79
New York La
Guardia

72

Tampa 62
Portland 60
Kansas City 59
Saint Louis 59
Sydney 59
Miami Ft Laud. 57
Montreal 56
Milwaukee 48



Team 10174 Appendices

Melbourne 47
Chicago - Mid-
way

45

San Diego 45
Calgary 44
New Orleans 44
Washington Na-
tional

44

Brisbane 34
Edmonton 32
Halifax 32
Sacramento 32
Oakland 30
Fort Myers 28
Miami Palm
Beach

28

San Jose 28
Houston Hobby 26
Ottawa 26
Austin 25
San Antonio 24
Reno-Tahoe 23
Jacksonville 20
Dallas Love 19
Winnipeg 18
Boston Manch-
ester

15

Des Moines 15
El Paso 15
Sarasota-
Bradenton

14

St Pete-
Clearwater

13

Orlando Sanford 12
Pensacola 12
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D Amtrak Station Size and Capacity

Railway
Stations

Platforms Size Capacity

Aberdeen,
Maryland

2 3294 91.5

Albany,
Oregon

1 1647 45.75

Albany-
Rensselaer,
NY

2 3294 91.5

Albion, MI 1 1647 45.75
Alpine,TX 1 1647 45.75
Alliance,
OH

1 1647 45.75

Allensworth 1 1647 45.75
Alexandria,
VA

2 3294 91.5

Alderson,
WV

1 1647 45.75

Aldershot,
Ontario

3 4941 137.25

Alvarado 4 6588 183
Alton, Illi-
nois

1 1647 45.75

Altona, PA 1 1647 45.75
Amsterdam,
NY

1 1647 45.75

Anaheium,
Ca

2 3294 91.5

Ann Aro-
bor, Mi

1 1647 45.75

Anniston,
AL

1 1647 45.75

Antioch-
Pittsburg

1 1647 45.75

Arcadia
Valley, MO

1 1647 45.75

Ardmore,
Ok

1 1647 45.75

Ardmore,
Pa

2 3294 91.5

Arkadelphia 1 1647 45.75
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Ashland,
KY

1 1647 45.75

Ashland,
VA

2 3294 91.5

Atlanta, Ga 2 3294 91.5
Auburn Ca 1 1647 45.75
Austin, TX 1 1647 45.75
Bakersfield,
Ca

2 3294 91.5

Maryland,
Baltimore

3 4941 137.25

Bangor, MI 1 1647 45.75
Barstow,
California

1 1647 45.75

Battle
Creek Mi

1 1647 45.75

Beaumont,
TX

1 1647 45.75

Fairhaven
Stations

1 1647 45.75

Bellow
Falls, VT

1 1647 45.75

Benson AZ 0 0 0
Berkely CA 1 1647 45.75
Berlin Con-
necticut

2 3294 91.5

Bingnen-
White

1 1647 45.75

Birmingham
Station

2 3294 91.5

Uptown
Station

2 3294 91.5

Back Bay 4 6588 183
North Sta-
tion

9 14823 411.75

South Sta-
tion

7 11529 320.25

Union Sta-
tion

1 1647 45.75

Bridgeport
Station

2 3294 91.5

Godbold 1 1647 45.75
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Browning
Station

1 1647 45.75

Brunswick
Maine

1 1647 45.75

Buffalo-
Depow

1 1647 45.75

Bufallo Ex-
change

1 1647 45.75

Burbank 2 3294 91.5
Burke Cen-
tre

1 1647 45.75

Burlington 2 3294 91.5
Burlington
NC

1 1647 45.75

BWI Rail
Station

2 3294 91.5

Camarillo 2 3294 91.5
Camden 1 1647 45.75
Carbondale 1 1647 45.75
Carlinville 2 3294 91.5
Carpinteria 1 1647 45.75
Cary 2 3294 91.5
Castleton,
VT

1 1647 45.75

Centralia 1 1647 45.75
Centralia
Union
Depot

1 1647 45.75

Illinois 1 1647 45.75
North
Charleston
Station

1 1647 45.75

Charleston
Station

1 1647 45.75

Charlotte
Station

1 1647 45.75

Charlotteseville
Union

2 3294 91.5

Chatsworth
Station

3 4941 137.25

Chemult 1 1647 45.75
Chicago
Union

30 49410 1372.5
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Chico Sta-
tion

1 1647 45.75

Cincinnati
Union

1 1647 45.75

Claremont
Station

1 1647 45.75

Cleburne 1 1647 45.75
Clemson 1 1647 45.75
Cleveland 1 1647 45.75
Clifton
Forge

1 1647 45.75

Coatesville 2 3294 91.5
Colfax 1 1647 45.75
Columbia 1 1647 45.75
Columbus 1 1647 45.75
Connellsvile 1 1647 45.75
Connersvile
IN

1 1647 45.75

Corcoran 1 1647 45.75
Cornwells 2 3294 91.5
Crawfordsville1 1647 45.75
Creston 2 3294 91.5
Croton 3 4941 137.25
Culpeper 1 1647 45.75
Cumberland
Station

1 1647 45.75

Cut Bank 1 1647 45.75
Dallas Un-
oin

3 4941 137.25

Danville 1 1647 45.75
David CA 2 3294 91.5
John D.
Dingell

2 3294 91.5

Deerfield
Beach

2 3294 91.5

Del Rio 1 1647 45.75
DeLand 1 1647 45.75
Delray 2 3294 91.5
Deming 0 0 0
Denmark 1 1647 45.75
Denver 7 11529 320.25
Detroit 1 1647 45.75
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Detroit
Lakes

1 1647 45.75

Devils
Lake

1 1647 45.75

Dillon Sta-
tion

1 1647 45.75

Dodge City 2 3294 91.5
Dover
Trans-
portation
Center

1 1647 45.75

Dowagiac 1 1647 45.75
Downington 2 3294 91.5
Du Quoin 1 1647 45.75
Dunsmuir 1 1647 45.75
Durand 1 1647 45.75
Durham
NH

1 1647 45.75

Durham
NC

1 1647 45.75

Dwight
Station

1 1647 45.75

Dyer
Station

1 1647 45.75

East
Glacier
Park

1 1647 45.75

East Lans-
ing

1 1647 45.75

Edmonds 1 1647 45.75
Effingham 1 1647 45.75
El Paso 1 1647 45.75
Elkhart 1 1647 45.75
Elizabethtown2 3294 91.5
Elko 2 3294 91.5
Elyria 1 1647 45.75
Emeryville 2 3294 91.5
Ephrata 1 1647 45.75
Erie 2 3294 91.5
Essex 1 1647 45.75
Essex Junc-
tion

1 1647 45.75
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Eugene
Springfield

1 1647 45.75

Everett Sta-
tion

2 3294 91.5

Exeter Sta-
tion

1 1647 45.75

Exton Sta-
tion

2 3294 91.5

Fairfiel-
Vacaville

1 1647 45.75

Fargo Sta-
tion

1 1647 45.75

Fayetteville 1 1647 45.75
Flagstaff 1 1647 45.75
Flint 1 1647 45.75
Florence 1 1647 45.75
Fort Ed-
ward

1 1647 45.75

Fort Laud-
erdale

2 3294 91.5

Fort Madi-
son

2 3294 91.5

Fort Mor-
gan

1 1647 45.75

Fort Worth 2 3294 91.5
Farmingham 2 3294 91.5
Fraser-
WinterPark

1 1647 45.75

Fredericksburg2 3294 91.5
Freeport 1 1647 45.75
Freemont 2 3294 91.5
Santa Fe 2 3294 91.5
Fullerton 3 4941 137.25
Fulton 1 1647 45.75
Gainesville 1 1647 45.75
Gainesville,
TX

1 1647 45.75

Galesburg 2 3294 91.5
Gallup 1 1647 45.75
Garden
City

1 1647 45.75

Gastonia 1 1647 45.75
Gilman 2 3294 91.5
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Glasgow 1 1647 45.75
Glendale 2 3294 91.5
Glenview 2 3294 91.5
Glenwood 1 1647 45.75
Goleta 1 1647 45.75
Granby 1 1647 45.75
Grand
Forks

2 3294 91.5

Grand
Junction

2 3294 91.5

Vernon J
Ehlers

1 1647 45.75

Green
River
Station

1 1647 45.75

John W.
Olver
transit
Center

1 1647 45.75

Greensburg
Statoin

2 3294 91.5

Greenvile
SC

2 3294 91.5

Greenwood 1 1647 45.75
Grimsby 0 0 0
Grover
Beach

1 1647 45.75

Guadalupe 1 1647 45.75
Hamlet 1 1647 45.75
Hammond
Station

1 1647 45.75

Hammond-
Whiting

1 1647 45.75

Hanford 2 3294 91.5
Harpers
Ferry

2 3294 91.5

Harrisberg 4 6588 183
Hartford
Union

1 1647 45.75

Hastings 1 1647 45.75
Hattiesburg 1 1647 45.75
Haverhill 2 3294 91.5
Havre 2 3294 91.5
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Hayward
Stiation

2 3294 91.5

Hazlehurst 1 1647 45.75
Helper Sta-
tion

1 1647 45.75

Hermann
Station

1 1647 45.75

High Point 1 1647 45.75
Hinton 1 1647 45.75
Holdrege 1 1647 45.75
Holland
Station

1 1647 45.75

Hollywood
Station

2 3294 91.5

Holyoke 1 1647 45.75
Homewood
Station

2 3294 91.5

Hope
Station

1 1647 45.75

Houston 2 3294 91.5
Hudson
Station

2 3294 91.5

Huntingdon
Station

1 1647 45.75

Hunting
WV

1 1647 45.75

Hutchinson
Station

1 1647 45.75

Independence
Station

1 1647 45.75

Indianapolis
Station

1 1647 45.75

Irvine 2 3294 91.5
Jackson 2 3294 91.5
Jacksonville 2 3294 91.5
Jesup 1 1647 45.75
Johnstown 1 1647 45.75
Joilet Il 2 3294 91.5
Kalamazoo 2 3294 91.5
Kankakee 1 1647 45.75
Kannapolis 1 1647 45.75
Kansas Sta-
tion

1 1647 45.75
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Kelso 1 1647 45.75
Kewanee 2 3294 91.5
Kingman 1 1647 45.75
Kingston 2 3294 91.5
Kingstree 1 1647 45.75
Kirkwood 2 3294 91.5
Kissimmee 2 3294 91.5
Klamath 2 3294 91.5
La Crosse 1 1647 45.75
La Grange 2 3294 91.5
Jefferson
City MO

1 1647 45.75

La Junta 2 3294 91.5
La Plata 1 1647 45.75
Lafayette 1 1647 45.75
Lafayette
LA

1 1647 45.75

Lake
Charles

1 1647 45.75

Lakeland 1 1647 45.75
Lamar CO 1 1647 45.75
Lamy 2 3294 91.5
Lancaster
Pa

2 3294 91.5

Lapeer 1 1647 45.75
Las Vegas 1 1647 45.75
Latrobe 2 3294 91.5
Laurel 1 1647 45.75
Lawrence
Station

1 1647 45.75

Icicle 1 1647 45.75
Lee’s Sum-
mit

1 1647 45.75

Lewistown 1 1647 45.75
Lexington 1 1647 45.75
Libby Sta-
tion

1 1647 45.75

Lincoln
Station

1 1647 45.75

Lincold NE 1 1647 45.75
Little Rock 1 1647 45.75
Lodi 1 1647 45.75
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Lompoc-
Surf

1 1647 45.75

Longview 1 1647 45.75
Lordsburg 0 0 0
Lorton 1 1647 45.75
Union Sta-
tion LA

6 9882 274.5

Lynchburg 1 1647 45.75
Macomd 1 1647 45.75
Madera 1 1647 45.75
Malta 1 1647 45.75
Malvern 1 1647 45.75
Manassas 2 3294 91.5
Maricopa 1 1647 45.75
Marks 1 1647 45.75
Marshall 1 1647 45.75

Table D1: Amtrak stations and corresponding platform numbers, estimated sizes and capacities
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E Destination Public Outlet Density Cost Analysis

E.1 Library POD Cost Analysis

Year P (Cents/kWH) Low POD C Low POD Low-Mid POD C Low-Mid POD High-Mid POD C High-Mid POD High POD C High POD
2018 10.670 8.109 7836.715 8.036 7765.370 8.133 7859.168 8.095 7822.457
2019 11.375 8.112 8357.313 8.043 8285.963 8.088 8332.743 8.068 8311.518
2020 11.553 8.081 8455.237 8.096 8470.630 8.036 8408.439 8.114 8490.366
2021 11.731 8.016 8516.117 8.082 8586.340 8.028 8529.388 8.078 8582.514
2022 11.908 8.013 8641.841 8.108 8744.607 8.016 8645.345 8.114 8750.959
2023 12.086 8.121 8889.142 8.012 8769.393 7.989 8744.227 8.106 8872.389
2024 12.263 8.074 8967.517 8.072 8965.815 8.044 8934.764 8.077 8970.817
2025 12.440 8.092 9117.783 8.040 9059.220 8.062 9083.600 8.063 9084.325
2026 12.618 7.994 9135.678 8.057 9207.706 8.057 9206.969 7.985 9125.397
2027 12.795 8.067 9348.002 8.040 9317.246 7.962 9226.741 8.038 9314.696
2028 12.972 8.008 9408.388 7.977 9372.334 7.931 9318.092 7.940 9328.226

Table E1: Cost of electricity at Libraries at varying POD

E.2 Railway POD Cost Analysis

Year P (Cents/kWH) Low POD C Low POD Low-Mid POD C Low-Mid POD High-Mid POD C High-Mid POD High POD C High POD
2018 10.670 1.653 92.773 1.646 92.395 1.651 92.657 1.649 92.529
2019 11.375 1.685 100.818 1.674 100.130 1.685 100.830 1.672 100.010
2020 11.553 1.690 102.689 1.681 102.148 1.654 100.529 1.693 102.869
2021 11.731 1.720 106.158 1.741 107.415 1.751 108.042 1.755 108.303
2022 11.908 1.713 107.311 1.684 105.499 1.736 108.715 1.726 108.096
2023 12.086 1.748 111.156 1.733 110.198 1.751 111.331 1.741 110.675
2024 12.263 1.744 112.497 1.757 113.338 1.749 112.843 1.718 110.802
2025 12.440 1.766 115.566 1.777 116.278 1.780 116.484 1.762 115.303
2026 12.618 1.767 117.286 1.762 116.965 1.783 118.324 1.771 117.511
2027 12.795 1.820 122.489 1.828 123.046 1.832 123.267 1.796 120.900
2028 12.972 1.854 126.532 1.829 124.798 1.865 127.222 1.861 126.985

Table E2: Cost of Electricity at Railway Stations at varying POD

E.3 Airport POD Cost Analysis

Year P (Cents/kWH) Low POD C Low POD Low-Mid POD C Low-Mid High-Mid POD C High-Mid POD High POD C High POD
2018 10.670 93.926 50981.490 165.303 89723.782 180.507 97976.238 180.851 98162.656
2019 11.375 94.027 54408.153 165.509 95771.247 180.439 104410.400 180.449 104415.955
2020 11.553 94.102 55303.178 165.878 97485.220 180.372 106002.810 180.706 106199.530
2021 11.731 94.021 56105.502 165.361 98675.759 181.045 108035.076 181.379 108234.681
2022 11.908 94.183 57053.086 165.990 100551.471 181.130 109722.255 181.233 109784.958
2023 12.086 94.167 57893.574 165.797 101931.494 181.357 111498.093 181.354 111495.854
2024 12.263 93.818 58526.073 165.834 103451.439 181.166 113015.695 181.636 113309.073
2025 12.440 94.134 59572.107 165.626 104815.880 181.668 114967.913 182.020 115190.475
2026 12.618 94.052 60368.735 166.193 106673.278 182.007 116824.013 181.916 116765.161
2027 12.795 94.085 61237.692 165.969 108025.274 181.538 118159.320 181.554 118169.541
2028 12.972 94.127 62113.006 166.340 109765.429 181.873 120015.607 181.668 119880.519

Table E3: Cost of Electricity at Airports at varying POD
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E.4 Coffee Shop POD Cost Analysis

Year P (Cents/kWH) Low POD C Low POD Low-Mid POD C Low-Mid POD High-Mid POD C High-Mid POD High POD C High POD
2018 10.670 1.861 7070.762 2.888 10975.989 3.279 12461.944 3.362 12777.717
2019 11.375 1.882 7623.673 2.838 11497.210 3.309 13404.933 3.322 13456.474
2020 11.553 1.791 7368.113 2.863 11778.458 3.415 14052.085 3.495 14381.698
2021 11.731 1.929 8061.136 3.004 12549.217 3.472 14507.556 3.525 14726.733
2022 11.908 1.868 7921.768 3.004 12739.349 3.542 15022.698 3.605 15287.842
2023 12.086 1.852 7970.895 3.069 13208.382 3.596 15476.600 3.815 16419.369
2024 12.263 1.930 8428.083 3.188 13923.673 3.769 16463.079 3.723 16259.018
2025 12.440 1.950 8641.926 3.194 14152.556 3.734 16543.222 3.964 17565.005
2026 12.618 1.936 8700.977 3.260 14648.761 3.830 17213.933 3.896 17506.398
2027 12.795 1.926 8778.122 3.237 14751.276 3.773 17194.668 4.054 18475.583
2028 12.972 1.949 9003.672 3.233 14936.382 3.846 17770.019 4.102 18950.906

Table E4: Cost of electricity at Coffee Shops at varying POD

E.5 School POD Cost Analysis

Year P(Cents/kWH) Low POD C Low POD Low-Mid POD C Low-Mid POD High-Mid POD C High-Mid POD High POD C High POD
2018 10.670 31.189 86541.061 63.044 174929.515 94.587 262454.729 119.202 330752.837
2019 11.375 31.300 92587.186 62.762 185654.032 93.931 277853.896 119.036 352117.327
2020 11.553 31.230 93824.145 62.522 187833.755 94.636 284316.495 120.086 360775.643
2021 11.731 31.426 95866.410 62.304 190060.976 94.683 288832.873 121.501 370640.504
2022 11.908 30.957 95863.907 62.844 194609.176 94.619 293008.656 123.210 381546.973
2023 12.086 31.095 97727.882 62.362 195997.434 94.094 295725.196 123.060 386761.206
2024 12.263 31.030 98955.193 62.583 199579.968 94.522 301433.824 122.596 390962.793
2025 12.440 31.145 100757.086 62.137 201023.020 94.543 305860.914 120.761 390677.702
2026 12.618 31.561 103558.036 63.053 206891.972 93.600 307123.123 120.196 394391.359
2027 12.795 31.389 104441.328 62.580 208224.619 93.880 312368.994 119.260 396815.936
2028 12.972 31.420 105990.557 62.567 211060.962 94.313 318153.062 118.076 398314.597

Table E5: Cost of electricity at Schools at varying POD
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F Capacity Derivations
For Airports, we found an average of 40.2 enplanements, the number of people boarding flights,

per departure.
Since every departure is at a gate, the gate can hold at least 40.2 people. Using the 36 ft2 per

seat rule, each gate is approximately 1447.2 ft2. Given that the average number of gates per airport
was calculated as 67.4, an average airport is determined to be 97,541 ft2.

For Coffee Shops, we found statistics detailing the average attendance of coffee shops to be 68
people per day (Insert Citation).

For Railway stations, we estimate the average visitors based on official statistics of Amtrak
stations and platforms across the nation. Using 1647 m2 per platform (CITATION), we found an
average railway station size of 2534 m2, which equates to approximately 70 seats. (Citation)

For Schools, we defined capacity to be equivalent to the number of visitors, since public schools
have variable capacity and will accommodate all students necessary to guarantee a right to a free
public education.

For Libraries, we found an average size of 21,500 ft2 for a community library. Using the 1 seat
per 36 ft2 rule, 21,500 ft2 can comfortably host 600 people (CITATION).
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G Agent-based Model NetLogo Code

g l o b a l s [
v i s i t o r s
c a p a c i t y
squa re−f o o t a g e
o u t l e t s
n s e a t−c o o r d s
n o c c u p i e d
o s e a t−c o o r d s
o o c c u p i e d
e n t e r− t i c k s
dev i ce− l i s t
dev i ce−ps
dev i ce−d r a i n s
dev i ce−c h a r g e s
dev i ce−w a t t a g e s

not−c h a r g i n g
no−c a p a c i t y
no−c h a r g e
t ime−done
t o t a l −l a p t o p−charge−t ime
t o t a l −mobile−charge−t ime
t o t a l −t a b l e t −charge−t ime
energy−consumpt ion

run− r e s u l t s
a v e r a g e

]

t u r t l e s −own [
d e v i c e s
i n i t −b a t t s
per−minute−d r a i n s
per−minute−c h a r g e s
c u r r−c h a r g i n g
b a t t s
s t a y
charge−t i m e s
rema in ing−t ime
a t−o u t l e t

]



Team 10174 Appendices

to−r e p o r t v i s i t o r −y e a r s [ y r ]
r e p o r t round (68 ∗ ( ( 1 + 0 . 0 1 7 ) ˆ y r ) )

end

to−r e p o r t c o f f e e−shop−d e n s i t y [ x ]
r e p o r t ( ( 1 0 9 . 8 − 72 .36 ∗ x + 17 .47 ∗ x ∗ x − 1 .932 ∗ x ∗ x ∗ x + 0 .09991 ∗ x ∗ x ∗ x ∗ x − 0 .001963 ∗ x ∗ x ∗ x ∗ x ∗ x ) / 2 8 . 3 9 5 )

end

t o i n i t i a l i z e −v a r i a b l e s
s e t v i s i t o r s v i s i t o r −y e a r s y e a r
s e t squa re−f o o t a g e 1000
s e t c a p a c i t y round ( squa re−f o o t a g e / 36)
s e t o u t l e t s o u t l e t −d e n s i t y ∗ squa re−f o o t a g e
s e t dev i ce− l i s t [ ” l a p t o p ” ” mobi le ” ” t a b l e t ” ]
s e t dev i ce−ps [ 0 . 7 3 0 . 7 7 0 . 5 3 ]
s e t dev i ce−d r a i n s [ 0 . 0 0 4 7 6 0.0016666666666666667 0 .0016666666666666667]
s e t dev i ce−c h a r g e s [ 0 . 0 1 6 4 1 0 .01835 0 . 0 0 3 8 ]
s e t dev i ce−w a t t a g e s [65 6 15]
s e t t o t a l −l a p t o p−charge−t ime 0
s e t t o t a l −mobile−charge−t ime 0
s e t t o t a l −t a b l e t −charge−t ime 0
s e t not−c h a r g i n g 0
s e t no−c a p a c i t y 0
s e t no−c h a r g e 0
s e t t ime−done 0
s e t energy−consumpt ion 0

end

t o s e t u p−world
r e s i z e−world 0 40 0 40
ask p a t c h e s [ s e t p c o l o r 38]
l e t xy 0
r e p e a t max−pxcor + 1 [

c r t 1 [ s e t x y xy max−pycor s e t shape ” t i l e b r i c k ” s e t c o l o r r e d ]
c r t 1 [ s e t x y xy 0 s e t shape ” t i l e b r i c k ” s e t c o l o r r e d ]
c r t 1 [ s e t x y max−pxcor xy s e t shape ” t i l e b r i c k ” s e t c o l o r r e d ]
c r t 1 [ s e t x y 0 xy s e t shape ” t i l e b r i c k ” s e t c o l o r r e d ]
s e t xy xy + 1

]
ask t u r t l e s wi th [ xco r = 0 and ( yco r = max−pycor / 2 o r yco r = max−pycor / 2 − 1 or yco r = max−pycor / 2 + 1 ) ] [ d i e ]
c r t 1 [ s e t x y ( max−pxcor / 2 − 5) ( max−pycor − 2) s e t shape ” c l o c k ” s e t c o l o r w h i t e s e t s i z e 2 ]
s e t n s e a t−c o o r d s [ ]
s e t n o c c u p i e d [ ]
s e t o s e a t−c o o r d s [ ]
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s e t o o c c u p i e d [ ]
l e t s e a t s−p l a c e d 0
l e t s e a t−x max−pxcor / ( ( c e i l i n g s q r t c a p a c i t y ) + 1)
l e t x−change s e a t−x
l e t s e a t−y max−pycor / ( ( c e i l i n g s q r t c a p a c i t y ) + 1)
l e t y−change s e a t−y
r e p e a t ( c e i l i n g s q r t c a p a c i t y ) [

s e t s e a t−y max−pycor / ( ( c e i l i n g s q r t c a p a c i t y ) + 1)
r e p e a t ( c e i l i n g s q r t c a p a c i t y ) [

i f s e a t s−p l a c e d < o u t l e t s [
ask p a t c h i n t ( s e a t−x ) i n t ( s e a t−y ) [ s e t p c o l o r 65]
s e t o s e a t−c o o r d s i n s e r t −i t em ( l e n g t h o s e a t−c o o r d s ) ( o s e a t−c o o r d s ) ( l i s t i n t ( s e a t−x ) i n t ( s e a t−y ) )
s e t o o c c u p i e d i n s e r t −i t em ( l e n g t h o o c c u p i e d ) ( o o c c u p i e d ) ( F a l s e )

]
i f s e a t s−p l a c e d >= o u t l e t s [

ask p a t c h i n t ( s e a t−x ) i n t ( s e a t−y ) [ s e t p c o l o r 95]
s e t n s e a t−c o o r d s i n s e r t −i t em ( l e n g t h n s e a t−c o o r d s ) ( n s e a t−c o o r d s ) ( l i s t i n t ( s e a t−x ) i n t ( s e a t−y ) )
s e t n o c c u p i e d i n s e r t −i t em ( l e n g t h n o c c u p i e d ) ( n o c c u p i e d ) ( F a l s e )

]
s e t s e a t s−p l a c e d s e a t s−p l a c e d + 1
i f s e a t s−p l a c e d = c a p a c i t y [ s t o p ]
s e t s e a t−y s e a t−y + y−change

]
s e t s e a t−x s e a t−x + x−change

]
end

t o s e t u p− t u r t l e
s e t s i z e 2
s e t x y 0 max−pycor / 2 − 0 . 5 + random− f l o a t 1
s e t c o l o r 45
s e t shape ” p e r s o n ”
l e t i 0
s e t d e v i c e s [ ]
s e t i n i t −b a t t s [ ]
s e t per−minute−d r a i n s [ ]
s e t per−minute−c h a r g e s [ ]
s e t cha rge−t i m e s [ ]
r e p e a t l e n g t h dev i ce−ps [

i f random− f l o a t 1 < i t em i dev ice−ps [
s e t d e v i c e s i n s e r t −i t em ( l e n g t h d e v i c e s ) ( d e v i c e s ) ( i t em i dev i ce− l i s t )
s e t i n i t −b a t t s i n s e r t −i t em ( l e n g t h i n i t −b a t t s ) ( i n i t −b a t t s ) ( p r e c i s i o n ( i f e l s e −v a l u e ( t i c k s < 720) [50 + random− f l o a t 50] [25 + random− f l o a t 5 0 ] ) 2 )
s e t per−minute−d r a i n s i n s e r t −i t em ( l e n g t h per−minute−d r a i n s ) ( per−minute−d r a i n s ) ( i t em i dev i ce−d r a i n s )
s e t per−minute−c h a r g e s i n s e r t −i t em ( l e n g t h per−minute−c h a r g e s ) ( per−minute−c h a r g e s ) ( i t em i dev i ce−c h a r g e s )
s e t cha rge−t i m e s i n s e r t −i t em ( l e n g t h charge−t i m e s ) ( charge−t i m e s ) ( 0 )
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]
s e t i i + 1

]
s e t b a t t s i n i t −b a t t s
s e t s t a y random 67 + random 141
i f n o t empty ? d e v i c e s [ s e t c u r r−c h a r g i n g i t em ( p o s i t i o n min i n i t −b a t t s i n i t −b a t t s ) d e v i c e s ]
s e t l a b e l−c o l o r w h i t e
s e t l a b e l ( word b a t t s ” , ” r ema in ing−t ime )

end

t o s e t u p
c l e a r−a l l
i n i t i a l i z e −v a r i a b l e s
s e t u p−world
l e t peop le−per−30 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
l e t i 0
r e p e a t 48 [

i f i >= 11 and i <= 32 [ s e t peop le−per−30 ( r e p l a c e−i t em ( i ) ( peop le−per −30) ( round ( 0 . 5 ∗ v i s i t o r s ∗ ( c o f f e e−shop−d e n s i t y ( i / 2 ) ) ) ) ) ]
s e t i i + 1

]
s e t e n t e r− t i c k s [ ]
s e t i 0
r e p e a t l e n g t h peop le−per−30 [

r e p e a t i t em i peop le−per−30 [
s e t e n t e r− t i c k s l p u t ( ( i ∗ 30) + random 29) e n t e r− t i c k s

]
s e t i i + 1

]
r e s e t− t i c k s
ask p a t c h ( max−pxcor / 2 ) ( max−pycor − 2) [ s e t p l a b e l−c o l o r r e d s e t p l a b e l ( word ” Time : ” i n t ( t i c k s / 60) ” : ” ( i f e l s e −v a l u e ( t i c k s mod 60 < 10) [ word ”0” ( t i c k s mod 6 0 ) ] [ t i c k s mod 6 0 ] ) ) ]

end

t o f i n d−s e a t
i f member? F a l s e o o c c u p i e d [

move−t o p a t c h ( i t em 0 i t em ( p o s i t i o n F a l s e o o c c u p i e d ) o s e a t−c o o r d s ) ( i t em 1 i t em ( p o s i t i o n F a l s e o o c c u p i e d ) o s e a t−c o o r d s )
s e t o o c c u p i e d ( r e p l a c e−i t em ( p o s i t i o n F a l s e o o c c u p i e d ) o o c c u p i e d True )
s e t a t−o u t l e t True
s e t r ema in ing−t ime s t a y
s t o p

]
i f member? F a l s e n o c c u p i e d [

move−t o p a t c h ( i t em 0 i t em ( p o s i t i o n F a l s e n o c c u p i e d ) n s e a t−c o o r d s ) ( i t em 1 i t em ( p o s i t i o n F a l s e n o c c u p i e d ) n s e a t−c o o r d s )
s e t n o c c u p i e d ( r e p l a c e−i t em ( p o s i t i o n F a l s e n o c c u p i e d ) n o c c u p i e d True )
s e t a t−o u t l e t F a l s e
s e t r ema in ing−t ime s t a y
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s t o p
]
s e t no−c a p a c i t y no−c a p a c i t y + 1
d i e

end

t o go
l e t ppl−e n t e r l e n g t h f i l t e r [ i −> i = t i c k s ] e n t e r− t i c k s
c r t ppl−e n t e r [ s e t u p− t u r t l e ]
ask t u r t l e s wi th [ shape = ” p e r s o n ” and l e n g t h d e v i c e s = 0] [ s e t not−c h a r g i n g not−c h a r g i n g + 1 d i e ]
ask t u r t l e s wi th [ shape = ” p e r s o n ” and xco r = 0] [ f i n d−s e a t ]
ask t u r t l e s wi th [ shape = ” p e r s o n ” ] [ s e t b a t t s ( map [ [ b a t t pmd ] −> max ( l i s t 0 ( b a t t − pmd ) ) ] b a t t s per−minute−d r a i n s ) ]
ask t u r t l e s wi th [ shape = ” p e r s o n ” and ( a t−o u t l e t = True and n o t empty ? f i l t e r [ i −> i < 1 ] b a t t s ) ] [ s e t cha rge−t i m e s ( r e p l a c e−i t em ( p o s i t i o n min b a t t s b a t t s ) ( cha rge−t i m e s ) ( i t em ( p o s i t i o n min b a t t s b a t t s ) cha rge−t i m e s + 1 ) ) ]
ask t u r t l e s wi th [ shape = ” p e r s o n ” and a t−o u t l e t = True ] [ s e t b a t t s ( r e p l a c e−i t em ( p o s i t i o n min b a t t s b a t t s ) ( b a t t s ) min ( l i s t 1 ( min b a t t s + ( i t em p o s i t i o n min b a t t s b a t t s per−minute−c h a r g e s ) ) ) ) ]
a sk t u r t l e s wi th [ shape = ” p e r s o n ” ] [ s e t l a b e l ( word ( map [ b a t t −> p r e c i s i o n b a t t 2 ] b a t t s ) ” , ” r ema in ing−t ime ) ]
ask t u r t l e s wi th [ shape = ” p e r s o n ” ] [ s e t r ema in ing−t ime rema in ing−t ime − 1]
ask t u r t l e s wi th [ shape = ” p e r s o n ” and ( rema in ing−t ime <= 0 or member? 0 b a t t s ) ] [

i f member? 0 b a t t s [
s e t no−c h a r g e no−c h a r g e + 1

]
i f r ema in ing−t ime <= 0 [

s e t t ime−done t ime−done + 1
]
show charge−t i m e s
i f member? ” l a p t o p ” d e v i c e s [

s e t t o t a l −l a p t o p−charge−t ime t o t a l −l a p t o p−charge−t ime + f i r s t cha rge−t i m e s
]
i f member? ” mobi le ” d e v i c e s and member? ” l a p t o p ” d e v i c e s [

s e t t o t a l −mobile−charge−t ime t o t a l −mobile−charge−t ime + i t em 1 charge−t i m e s
]
i f member? ” mobi le ” d e v i c e s and n o t member? ” l a p t o p ” d e v i c e s [

s e t t o t a l −mobile−charge−t ime t o t a l −mobile−charge−t ime + f i r s t cha rge−t i m e s
]
i f member? ” t a b l e t ” d e v i c e s [

s e t t o t a l −t a b l e t −charge−t ime t o t a l −t a b l e t −charge−t ime + l a s t cha rge−t i m e s
]
i f a t−o u t l e t = True [

show ( p o s i t i o n ( l i s t [ pxcor ] o f pa tch−h e r e [ pycor ] o f pa tch−h e r e ) o s e a t−c o o r d s )
s e t o o c c u p i e d ( r e p l a c e−i t em ( p o s i t i o n ( l i s t [ pxcor ] o f pa tch−h e r e [ pycor ] o f pa tch−h e r e ) o s e a t−c o o r d s ) o o c c u p i e d F a l s e )

]
i f a t−o u t l e t = F a l s e [

s e t n o c c u p i e d ( r e p l a c e−i t em ( p o s i t i o n ( l i s t [ pxcor ] o f pa tch−h e r e [ pycor ] o f pa tch−h e r e ) n s e a t−c o o r d s ) n o c c u p i e d F a l s e )
]
d i e

]
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s e t energy−consumpt ion t o t a l −l a p t o p−charge−t ime ∗ 60 ∗ f i r s t dev i ce−w a t t a g e s + t o t a l −mobile−charge−t ime ∗ 60 ∗ i t em 1 dev ice−w a t t a g e s + t o t a l −t a b l e t −charge−t ime ∗ 60 ∗ l a s t dev i ce−w a t t a g e s
t i c k
ask p a t c h ( max−pxcor / 2 ) ( max−pycor − 2) [ s e t p l a b e l ( word ” Time : ” i n t ( t i c k s / 60) ” : ” ( i f e l s e −v a l u e ( t i c k s mod 60 < 10) [ word ”0” ( t i c k s mod 6 0 ) ] [ t i c k s mod 6 0 ] ) ) ]

end

t o run−one−day
r e p e a t 1440 [ go ]

end

to−r e p o r t run−one−day−r e p o r t
r e p e a t 1440 [ go ]
r e p o r t energy−consumpt ion

end

t o run−one−day−x−t i m e s
s e t run− r e s u l t s [ ]
r e p e a t x−t i m e s [

i n i t i a l i z e −v a r i a b l e s
s e t u p−world
l e t peop le−per−30 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
l e t i 0
r e p e a t 48 [

i f i >= 11 and i <= 32 [ s e t peop le−per−30 ( r e p l a c e−i t em ( i ) ( peop le−per −30) ( round ( 0 . 5 ∗ v i s i t o r s ∗ ( c o f f e e−shop−d e n s i t y ( i / 2 ) ) ) ) ) ]
s e t i i + 1

]
s e t e n t e r− t i c k s [ ]
s e t i 0
r e p e a t l e n g t h peop le−per−30 [

r e p e a t i t em i peop le−per−30 [
s e t e n t e r− t i c k s l p u t ( ( i ∗ 30) + random 29) e n t e r− t i c k s

]
s e t i i + 1\ u s e p a c k a g e { l i s t i n g s }

]
r e s e t− t i c k s
ask p a t c h ( max−pxcor / 2 ) ( max−pycor − 2) [ s e t p l a b e l−c o l o r r e d s e t p l a b e l ( word ” Time : ” i n t ( t i c k s / 60) ” : ” ( i f e l s e −v a l u e ( t i c k s mod 60 < 10) [ word ”0” ( t i c k s mod 6 0 ) ] [ t i c k s mod 6 0 ] ) ) ]
s e t run− r e s u l t s l p u t run−one−day−r e p o r t run− r e s u l t s

]
s e t a v e r a g e ( sum run− r e s u l t s ) / x−t i m e s

end
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H Electric Vehicles Python Simulation Code

i m p o r t numpy as np
i m p o r t pandas as pd
i m p o r t random

b a t t e r y c a p a c i t y = 5 8 . 8
p = 0 . 2

d e f vor ( y e a r ) :
x = y e a r − 2000
r e t u r n 0 .1247 ∗x∗ x + 0 .6053 ∗ x + 5 .5952

d e f num cars ( y e a r ) :
x = y e a r − 2000
r e t u r n 18590 ∗ x ∗ x − 418483 ∗ x + 2 e6

y e n e r g i e s = [ ]
f o r y r i n r a n g e ( 2 0 1 8 , 2 0 2 9 ) :

d e n e r g i e s = [ ]
f o r day i n r a n g e ( 3 6 5 ) :

c e n e r g i e s = [ ]
t ime = 0
f o r i i n r a n g e ( i n t ( num cars ( y r ) ) ) :

w a t t a g e = np . random . c h o i c e ( [ 4 5 , 1 . 4 4 , 9 . 6 ] , p = [ 0 . 1 4 9 , 0 . 0 5 4 , 0 . 7 9 7 ] )
t ime += 0 . 3∗ b a t t e r y c a p a c i t y / w a t t a g e
i f t ime >= 2 4 :

b r e a k
c e n e r g i e s . append ( 0 . 3 ∗ b a t t e r y c a p a c i t y ∗ ( num cars ( y r ) ) / (1 ∗ vor ( y r ) ) )

d e n e r g i e s . append ( sum ( c e n e r g i e s ) )
p r i n t ( c e n e r g i e s )

y e n e r g i e s . append ( sum ( d e n e r g i e s ) )


