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Motivation:
Dynamical Systems

- Examples:
- Predator-Prey Models
- Neuron Activity
- Lorenz Systems
- Goals:
- Predict
- Control
- Governing behavior
- Difficulties:
- Nonlinear
- Many sources of uncertainty
- General solutions are still an open
problem



Solution: Koopman Dynamics

- In higher dimensions we can unpack nonlinearities
- Extend regions where linear approximations are appropriate
- Provide physical interpretability to complex systems



Background: Dynamical System
Theory



Dynamical System Definition

- System relating the position of a point in ambient space over time

Continuous Discrete

%m(t) = f(z(t),t; B) zr+1 = F(a)
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Linear Dynamical Systems

Natural System

General Form: im — A
dt
Closed Form: z(t+ty) =e

Atw(to)

Uncoupled System

Decoupled
Form:

Spectral
Decomposition
Form:

—Z2; = /\,'Zj

z(t + to) = Qe Q™ 'x(to)



Koopman Operator Theory



High Level Idea

Extend phase space of
system to a Hilbert Space
Use spectral decomposition
on the operator in this space
to find a basis of
eigenfunctions

Use these functions to
decouple and linearize the
system



Mathematical Foundations




Eigenfunctions

Continuous Discrete

%¢(m) = Ki(z) = () U(@r41) = Kp(er) = Ap(ax)

Partial Differential Equation Formulation

M(z) = T9(@) = Vi(e) & = V() - ()



Construction of Eigenfunctions

Continuous Discrete
d
K(¥1,92) = — (Y192) K (Y1 (z)2(x)) = 1 (Fi(z))2 (Fi(z))
= Y192 + P11s = A A1 (z)Ye(x)
= AU + A 1119

= (A1 + A2)Y192

We can create eigenfunctions from other eigenfunctions!



Koopman Mode Decomposition

General Observation

g(z) =

-91(3’«')-
go(x)

(@)

Eigenvalue Decomposition

gi(x) = ) _ vijty;
j

Koopman Mode Decomposition

g(z) =

(D5 v

D5 V25¥;

_Z;o Vpj¥j



Dynamics via Koopman Modes




Koopman Embedding Example

(i?l = HI Li‘z = /\(1132 — .’17%)

Candidate Trajectories
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Koopman Embedding Example

Koopman Embedding

0 0 I
A=A o
0 2u| |z?

Eigenfunctions

Yy =1 Y = T2 — bx} b=



Dynamic Mode Decomposition



High Level e C(Calculate spatio-temporal
Summary relationships between data

e Find best fit matrix between
data at adjacent time steps

e Simplify best fit matrix
calculation by projecting it
onto a reduced dimensional
space




Problem Setup

Data: X = [z(t1) z(t2) .. z(tm)] X' = [x(t)) x(ty) .. =z(t,)]
Best Fit ;

Matrix: X =A4x
Problem: A



DMD Algorithm

e Step 1: Singular Value Decomposition X ~ USV*

e Step 2: Pseudo-Inverse A= XVE I o) A- U AU -0 XVE
e Step 3: Spectral Decomposition i

A=WAW™!
e Step 4: Reconstructing DMD Modes

) d=XVEwW
e Step 5: Recovering System State

Tk =Y ¢\ b = BAF1b

=1



Recent Advances

Connection between Koopman
eigenfunctions and partitions
of phase space

Connections to Ergodic Theory
Deep Learning applications for
Koopman Eigenfunction
discovery

Applications of Koopman
Dynamics to Control Systems
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