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1 Review of Probability Theory

• A statistic is a value computed from data

• The distribution of a statistic is its probability distribution

• A statistic is said to be unbiased if E(p̂) = p

• A random variable is a function from Ω to R

• Discrete random variables take a finite number of values

• Probability mass functions outputs the probabilities of given inputs

• Variables are said to be independent if P (X = xiandY = yi) = P (X = xi)P (Y = yi)

• A cumulative distribution function is defined as F (X) = P (X ≤ x)

• FX(x) =
∫ x
−∞ fx(y)dy

• The inverse of Fx(x) is the quantile function

• A joint distribution is specified by a joint pmf/pdf = P[X1 = x1, ...Xk = xk]

• If X1, ..., Xn are independent then fX1,...,Xn(x1, ..., xn) = fX1(x1) · ... · fXn(xn)

Expected Value

• The expected value of a random variable X is given by E(X) =
∫∞
−∞ x · fx(x)dx

• The Law of the Unconcious Statistician (LOTUS): E(g(X)) =
∫∞
−∞ g(x) · fx(x)dx

• Expectation is linear: E(aX1 + bX2) = aE(X1) + bE(X2)

Variance and Covariance

• The variance of a random variable is given by V ar[X] = E[(X − EX)2] = E(X2)− (EX)2

• Variance is invariant to translations (i.e V ar[X + c] = V ar[X])

• Variance with a constant multiple: V ar[cX] = c2V ar[X]

• V ar[X1 +X2] = V ar[X1] + V ar[X2] only if X1 and X2 are independent

• Otherwise, the variance of a sum is given by: V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov[X,Y ]

• Covariance is defined as Cov[X,Y ] = E[XY ]− E[X]E[Y ]

– Translational Invariance: Cov[X + a, Y + b] = Cov[X,Y ]

– Cov[X,X] = V ar[X]

– If, X and Y are independent then Cov[X,Y ] = 0; however, the converse is not true
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– Bilinearity: Cov[X1 + ...+Xn, Y1 + ...+ Ym] =

n∑
i=1

m∑
j=1

Cov[Xi, Yj ]

– Constant multiple: Cov[aX, bY ] = ab Cov[X,Y ]

• Generalized Variance: V ar[X1 + ...+Xn] =

n∑
i=1

V ar[Xi] + 2
∑
i<j

Cov[Xi, Xj ]

• Standard deviation is defined as σ =
√
V ar[X]

• correlation between variables is their covariance normalized by the product of their standard deviations:

corr(X,Y ) = Cov[X,Y ]√
V ar[X]

√
V ar[Y ]

• Cauchy-Schwarz Inequality: Cov[X,Y ]2 ≤ V ar[X]V ar[Y ]

Moment Generating Functions

• A moment generating function of random variable X is defined as MX(t) = E[etX ]

• Moment generating functions provide a more convinent way of studying distributions

• Two variables with the same moment generating functions have the same distribution

• The MGF of a sum of independent variables is the product of their individual MGFs (i.e MX1+...+Xn(t) =
MX1

(t) · ... ·MXn(t))

Multivariate Normal Distribution

• A multivariate normal distribution is characterized by a mean vector, µ and a symmetric covariance matrix, Σ

• A set of random variables is said to be multivariate normal if any linear combination of the variables has a
normal distribution

• Furthermore, E[Xi] = µi, V ar[Xi] = Σii, and Cov[Xi, Xj ] = Σij

Large-sample Approximations

(Weak) Law of Large Numbers

Theorem: Suppose X1, ...Xn are iid with E[Xi] = µ and V ar[Xi] <∞. Let X̄ = 1
n (X1 + ...+Xn). Then X̂ → µ in

probability, as n→∞.

Central Limit Theorem

Theorem: Suppose X1, ...Xn are iid with E[Xi] = µ and V ar[Xi] = σ2. Let X̄ = 1
n (X1 + ... + Xn). Then,

√
n( X̄−µσ )→ N(0, 1) in distribution, as n→∞.

Continuous Mapping Theorem

Theorem: Let g(x) be a continuous function of x. As n→∞,

• If Sn → Z in distribution, then g(Sn)→ g(Z) in distribution

• If Sn → µ in probability, then g(Sn)→ g(µ) in probability
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2 Hypothesis Testing

• A hypothesis test is a binary question about the distribution of the data

• The goal of a hypothesis test is to either accept a null hypothesis, H0 or reject in favor of an alternative
hypothesis, H1.

• Under the Neyman-Pearson paradigm, the default assumption is that H0 is true. Therefore, the burden of the
study is to disprove it.

• A test statistic T is any statistic computed from data of which extreme values provide evidence against H0

• We can compute T from data and compare it against the distribution of T if H0 were true. We refer to this
proposed distribution as the null distribution of T

• For a given test statistic T, we divide its possible values into an acceptance and rejection region. If our
calculated value of T belongs to the rejection region, then we reject H0 in favor of H1

• Type I Error is the probability that we wrongly reject H0

• Type 1 Error = PH0
[T belongs to rejection region]

• In the Neyman-Pearson paradigm, we choose our rejection region such that Type 1 Error ≤ α for a specificed
α

• We refer to this value α as the significance level of our test

• Alternatively, we can define a p-value which is the significant level at which we would reject H0

• In other words, the p-value is the probability that null distribution selects a value more extreme than the
computed statistic

• A hypothesis is said to be simple if it completely specifies the distribution of the data

• Type II Error is the probability of accepting the null H0 when H1 is true.

• We define the power of a test to be the probability of correctly rejecting H0

• Power: 1− β = PH1
[reject H0]

• The goal of a proposed test statistic is to maximize the power of the test under the condition that type 1 error
is ≤ α

• For a generic Normal Distributions, T ∼ N(µ, σ2), the rejection region of T is T < µ− σ · z(α) for a one sided
test and |T − µ| > σ · z(α2 )

The Neyman-Pearson Lemma

Let H0 and H1 be simple hypotheses, and fix a significant level α. Suppose there exists a value c > 0, such that the
likelihood ratio test which rejects H0 when L(x) < c and accepts H0 when L(x) ≥ c has Type 1 error = α. Then for
any other test with Type 1 error ≤ α, its power against H1 is at most the power of the likelihood ratio test.

• The Liklihood ratio statistic: L(x) = f0(X)
f1(X)

• A hypothesis is referred to as composite if it is not simple

• For a hypothesis test with signficance level α on composite hypotheses, every possible distribution described
by H0 must have type 1 error less than the significance level
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Pivotal Test Statistics

• A work around for this restriction is the use of a pivotal statistic which is a test statistic T whose sampling
distribution is identical for every distribution in H0

• The one-sample t-statistic, T =
√
nX̄
S is an example of a pivotal statistic for the H0 : X ∼ N(0, σ2)

• S is the sample variance where S = 1
n−1 ((X1 − X̄)2 + ...+ (Xn − X̄)2)

• Sample variance is independent of sample mean for iid draws from a normal distribution

• t-distribution with n degrees of freedom is given by Z√
U
n

where Z ∼ N(0, 1) and U ∼ χ2
n

Non-parametric Test Statistics

• Another alternative to working with composite hypotheses is to rephrase them as nonparametric hypotheses

• A nonparametric hypothesis is one that does not specify the distribution with a particular form (i.e. H0: f has
median 0)

• Sign Statistic is an example of a nonparametric test statistic

• S =

n∑
i=1

1Xi > 0

• We can define our rejection region based on Binomial(n, 1/2)

• For large n, we can use the CLT to estimate the distribution of S via
√

4n(S2 −
1
2 )→ N(0, 1)

• For large n, the type 1 error of this statistic will approach α (asymptotic level-α test)

Two-sample t-test

• Test the means of two normal distributions via the pooled two-sample t-statistic: T = X̄−Ȳ
Spooled

√
1
n+ 1

m

• Pooled sample variance: S2
pooled = 1

m+n−2

 n∑
i=1

(Xi − X̄)2 +

m∑
j=1

(Yi − Ȳ )2


• The pooled two-sample t-test is pivital under H0 : µx = µy

• This test statistic T ∼ tm+n−2

• Welch’s t-Test corrects for the assumption of the same variance between thw two distribution (also known as
unequal variances t-test)

• Welch’s t-test: Twelch = X̄−Ȳ√
1
nS

2
X+ 1

mS
2
Y

Mann-Whitney-Wilcoxon rank-sum Test

• Mann-Whitney-Wilcoxon rank-sum test is a nonparametric method for a two-sample test

1. Sort a pooled sample of all observations X1, ...Xn, Y1, ..., Ym in increasing order

2. Rank the sorted list with the smallest observation with a rank of 1

3. Define T as the sum of ranks for the Y values

• Under the null-hypothesis the
(
m+n
m

)
possibilities are equally distributed

– E(T ) = m(m+n+1)
2

– V ar[T ] = mn(m+n+1)
12

– T−E[T ]√
V ar[T ]

→ N(0, 1) as n,m→∞
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Permutation Tests

• Consider a generic test statistic T (X1, ..., Xn, Y1, ..., Ym)

• The permutation null distribution of T is the distribution of T (X∗1 , ..., X
∗
n, Y

∗
1 , ..., Y

∗
m) where each input is

a random permutation of the datapoints

1. Randomly permute pooled data many times and compute the value of T for each permutation

2. Compute p-value as the fraction of the simulations whete T ≥ tobs where tobs is the value of T for the
original data

3. Reject H0 if the p-value is ≤ α

• Permutation test is a type of conditional test

• Although the permutation test is not pivotal, it is pivotal over its conditional inputs

• Permutation test over all (m+n)! permutations would have type 1 error ≤ α

• Measures of distances between pairwise points can be used to estimate whether the distributions are approxi-
mately equivalent

Fisher’s Exact Test

• Fisher’s exact test is another example of a conditional test

• Suppose X1, ...XNA ∼ Bern(p) and Y1, ...YNB ∼ Bern(q)

• Our hypotheses are as follows: H0 : p = q and H1 : p > q

• Let’s consider our test statistic NA1
the number of outcomes 1 in the group A

• Under random permutation, P [NA1 = k] =
(n1
k )(n−n1

nA−k
)

( n
nA

)
which takes the distributionNA1 ∼ hypergeometric(n, n1, nA)

• Reject H0 when Na > Un,n1,nA(α)

Power and Effect Size

• For a test of X̄ ∼ N(0, σ
2

n ) vs. X̄ ∼ N(µ, σ
2

n )

• Analytically, this test rejects when
√
n
σ X̄ > z(α)

• Under this paradigm, the power is given by Φ(
√
nµσ − z(α))

• Effect size µ
σ is the shift in the mean between the tested hypothesis divided by the noise standard deviation

• There exist many power formulas dependent on the distributions and statistics being tested

• Paired Design is a testing method used to improve power of an experiment

• For H0 : µx = µy vs H1 : µx > µy we can consider the paired differences Di = Xi − Yi

• Power for this paired distance simplifies to Φ( 1√
1−ρ ·

√
n
2 ·

µx−µy
σ − z(α))

• 1− ρ is known as the relative efficiency of the unpaired design

The Multiple Testing Problem

• For n different hypothesis tests, you will (on average) falsely reject αn of them

• p-values of the n tests should be uniformally distributed between [0,1]
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The Bonferroni Correction

• Instead of using a significance level of α use a significance level of α
n

• Family-wise error rate is the probability that we reject at least one of the true nulls

• Bonferroni method controls FWER at level α (guarantees FWER α for all null hypotheses)

• Controlling FWER is over-restrictive

The Benjamini-Hochberg Procedure

• False Discovery Rate is the number of true null hypotheses rejected divided by the number of total hypotheses
rejected

• Controlling at FDR at a level α means that FDR ≤ α

• Estimate FDR by ˆFDP = tn
R(t) ≤ α for the largest cutoff t where R(t) is the number of rejected hypotheses

1. Sort the n total p-values from smallest to largest

2. Find the largest r s.t. P(r) ≤ αr
n

3. Reject the first r null hypotheses

3 Parametric Models

• Parametric model is a family of distributions that are described by a few parameters

• A general parametric model with k parameters is denoted f(x|θ) where θ ∈ Rk

• We define the set of allowable values for our model as the parameter space (subset of Rk)

• The study of parametric models is focused on estimating θ given X1, X2, ..., Xn ∼ f(x|θ)

Method of Moments

• Estimate k coefficients by considering the first k moments of the distribution

• Recall: µ1 = E[X], µ2 = E[X2], ..., µk = E[Xk]

• We then estimate these moments using our data via µ̂1 = 1
n (X1 + ... + Xn), µ̂2 = 1

n (X2
1 + ... + X2

n)...µ̂k =
1
n (Xk

1 + ...+Xk
n)

Bias, Variance, and Mean-Squared-Error

• Since each estimate of θ is dependent on the data, we can consider them statistics with inherent randomness
based on the variability of our data

• We can subsequently evaluate the accuracy of our estimate

Bias

– Bias is given by Eθ[θ̂]− θ
– Bias is a measure of how close the average value of our estimate is to the true parameter

Standard Error

– Standard Error is given by

√
V arθ[θ̂]

– Standard error is a measure of how variable our estimate is around the true value

6



Mean-Squared Error

– MSE is given by Eθ[(θ̂ − θ)2]

– MSE = V ariance+Bias2

• An estimate is said to be unbiased if Eθ[θ̂] = θ for all possible θ ∈ Rk

• Jensen’s inequality: E[g(Y )] > g(E[Y]) for strictly convex functions

Maximum Liklihood Estimator

• For X1, X2, ..., Xn ∼ f(x|θ) we define the joint PDF/PMF as the likelihood function: lik(θ) = f(X1|θ) ×
f(X2|θ)× ...× f(Xn|θ)

• We define the Maximum Likelihood Estimator as the θ that maximizes this function

• Computing the MLE is an optimization problem that often uses the log-likelihood function: l(θ) =

n∑
i=1

log f(Xi|θ)

• Always verify that the MLE estimate exists within the parameter space and that the extremum point is indeed
a maximum

Newton Raphson Method

1. Begin with an initial guess: α(0) (Often times MOM estimator)

2. Iterate α(t+1) via α(t+1) = α(t) − f(α(t))
f ′(α(t))

3. If α(t+1) extends outside of the parameter space, reset it to a small value within it

• For multiple parameters we generalize this form via: θ(t+1) = θ(t) − (∇2l(θ(t)))−1∇l(θ(t))

Lagrange Multipliers

• Lagrange multipliers are used to optimize under a given constraint

• We define the Lagrangian as: L(θ, λ) =

n∑
i=1

log f(Xi|θ) + λ(constraint equation)

• For each θi we solve 0 = ∂L
∂θi

finding θi as a function of λ

• We then substitute our expressions for each θi into 0 = ∂L
∂λ to solve for λ via our initial constraint

• Finally, we use our expression for λ to find θi from our original equations

Confidence Intervals

• If we have the bias and variance of our estimate we can make an asympotiotic prediction on the statistical
behavior of our estimate

• Specifically, by the Law of Large Numbers we have that λ→ Eλ0 [λ̂] as n→∞

• We can then invoke the Central Limit Theorem:
√
n(λ̂− Eλ0

)→ N(0, V arλ0
[λ̂] ∗ n)

• Alternatively, this reveals that for large n, the distribution of λ̂ is apprximately N(Eλ0
, V arλ0

[λ̂])

• We can use this distribution to construct a confidence interval for our estimate

• We define z(α/2) to be the upper alpha point of the standard normal distribution.

• By defining our coverage interval as : −SE · z(α/2) ≤ λ̂− Eλ0
≤ SE · z(α/2) we ensure that our estimate will

be in the interval with probability 1− α for large n
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Fisher Information

• Under smoothness conditions a Theorem tells us that as n → ∞ we have two properties of the MLE of the
model

(a) The MLE is consistent, θ̂ → θ0 in probability

(b) The MLE is asmptotically normal and
√
n(θ̂ − θ0)→ N(0, 1

I(θ0) )

• We define I(θ) as the Fischer Information where I(θ) = V arθ

[
∂
∂θ logf(X|θ)

]
= −Eθ

[
∂2

∂θ2 logf(X|θ)
]

• We also call the quantity ∂
∂θ logf(X|θ) as the score

• We have that θ̂ is asympotiotically unbiased where the bias of θ̂ is less than the order 1√
n

such that
√
n(θ̂− θ)

converges to a distribution with mean 0

• Our standard error is approximately
√

1
nI(θ0)

• Notice that our standard error is on the order 1√
n

which means it is the key contributer to the mean-squared
error

• Finally, we have that under the true parameter θ0 the distribution of θ̂ is approximately N(θ0,
1

nI(θ0) )

• We can then use this normal approximation to construct confidence intervals for our MLE estimates

• For example, our coverage interval for θ with coverage 1− α is θ̂ ±
√

1
nI(θ̂)

· z(α/2)

Geometrical Interpretation

• We can also consider the Fischer Information to be the curvature around the true parameter

• Therefore, large Fischer Information values indicate that small perturbations of θ away from θ0 lead to large
decreases in the log-likelihood

• Alternatively, a large Fischer Information can be interpreted as our data containing more ”information” about
the parameter

Fisher Information for Multiple Parameters

• For a model with k parameters we extend the Fischer Information into a k x k Fischer Information matrix

where I(θ)ij = Covθ

[
∂
∂θi
logf(X|θ), ∂

∂θj
logf(X|θ)

]
= Eθ

[
∂2

∂θi∂θj
logf(X|θ)

]
• Now, under the assumption that I(θ) is invertible we have

√
n(θ̂ − θ)→ N(0, I(θ)−1)

Fisher Information for Non-Identically Distributed Observations

• In the case that we are dealing with non-identially distributed data, we can define the Fischer Information as
IY (θ) = V arθ[l

′(θ)] = −E[l′′(θ)]

• We can then approximate our MLE via N(θ0, IY (θ0)−1)

• For multiple parameters we use IY (θ)ij = Covθ

[
∂
∂θi
l(θ), ∂

∂θj
l(θ)

]
= −Eθ

[
∂2

∂θi∂θj
l(θ)

]
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Delta Method

• The Delta Method is used to quantify the uncertainity of a plug-in estimates

• If a function g : R → R is continuously differentiable at θ ∈ R and if
√
n(θ̂ − θ) → N(0, v(θ)) in distribution,

then as n→∞ we have
√
n(g(θ̂)− g(θ))→ N(0, g′(θ)2v(θ))

• We can quantify the uncertainity in our MLE via the Fisher Information

• The delta method can be applied to find the standard errors for method-of-moments estimates

• We find that
√
n(θ̂−θ)→ N(0, g′(h(θ))2·v(θ)) which yields a 1−α confidence interval of θ̂±

√
g′(h(θ̂)2·v(θ̂))

n ·z(α/2)
where h is the function relating the theoretical mean to θ and g is its inverse

Cramer-Rao Bound and Asymptotic Efficiency

• Cramer-Rao Lower Bound states that any unbiased estimator of θ must have a variance of at least 1
nI(θ)

• For two estimators θ̂ and θ̃ from the same data that satisfy
√
n(θ̂−θ)→ N(0, u(θ)) and

√
n(θ̃−θ)→ N(0, v(θ))

we refer to the ratio of their variances as asymptotic relative efficiency

• This value can be interepreted as the ratio of the sample sizes needed for the two estimators to have the same
variance

• An estimator is said to be asympotiotically efficient if
√
n(θ̂ − θ)→ N(0, 1

I(θ) )

• The MLE is asympotiotically efficient but the MOM estimators are not necessarily so

• Cramer-Rao bound holds for plug-in estimators where we have g′(θ)2

nI(θ) as the new lower bound

Bayesian Inference

• Unlike the frequentist paradigm of statistical inference, in the Bayesian paradigm we treat θ as a random
variable

• Key Tenant of Bayesian Inference is the expression: fΘ|X(θ|x) ∝ f(X|Θ)(x|θ)fΘ(θ) which can be interpreted as
the Posterior distribution is proportional to the product of Likelihood and Prior

• To extract a singular estimate for our parameter we consider the posterior mean and posterior mode of our
posterior Distributions

• Often times confidence intervals are is just the upper-α/2 and lower-α/2 points of our posterior distributions

• Bayes mean can be interpretted as a weighted average between the sample mean and the prior mean

• A prior distribution is said to be a conjugate prior if the resulting posterior distribution for a given model is
in the same family as the Porior

• Improper priors (prior distributions that do not describe valid PDFs) can be used in bayesian analysis to
produce valid posterior distributions

• In contrast to the frequentist approach, the Bayesian model assigns randomness to the parameter rather than
the data

• Bayesian is conditional on data!

• Bayesian credible interval does not guarantee frequentist coverage for a fixed true parameter, but it does for
the average case

• The influence of prior distributions diminishes as n increases

• For large n the frequentist and Bayesian approaches converge. Specifically, the posterior distribution from the
Bayesian approach resembles a normal distribution centered at the MLE with variance 1

nI(θ̂)
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Kullback-Leibler Divergence

• The Kullback-Leibler Divergence is a notion of how ”close” two probability distributions are

• The KL Divergence from f to g is given by DKL(g||f) =
∫
g(x)log g(x)

f(x)dx = E[log g(x)
f(x) ] = E[log g(X)] −

E[log f(X)]

• KL Divergence is asymmetric where DKL(g||f) 6= DKL(f ||g)

• The KL Divergence for a parameter θ and its true parameter θ̂ is approximately I(θ0)
2 (θ − θ0)2

• In a mis-specified model the MLE converges to the value of θ that minimizes DKL(g(x)||f(x|θ))

• Variance is no longer given by our Fischer Information metric when we estimate our parameter by minimizing
the KL Divergence

• Instead, we can use the delta method to find the variance

Bootstrap

• Bootstrap methods are a series of computational methods used to estimate statistics or develop confidence
intervals from a given dataset

• The main idea behind the Bootstap is to simulate new data based on the existing data

Parametric Bootstrap

• The parametric bootstrap method estimates the model f(x|θ) via f(x|θ̂)

• It is akin to using the plug-in principle to simulate new draws and then calculating your statistic from the new
draws

Nonparametric Bootstrap

• Instead of assuming a parametric model, in this method we sample our existing data values with replacement

• Continue to make n draws, but now some of the values may be repeated

• The estimated distribution from the nonparametric bootstrap is an empirical distribution

• While empirical distributions are always discrete and do not provide useful information about the mode, max
value, or min value, but they can be useful tools to estimate CDF, mean, and variance

• Guards against model misspecification

Bootstrap Confidence Intervals

• For an estimate θ̂ we can estimate ŝe via a bootstrap method and use the confidence interval: θ̂ ± z(α/2) · ŝe

• For B bootstrap simulations we have θ̂∗1 , ...θ̂
∗
B . We can define our confidence interval by looking at the α/2 and

1− α/2 percentiles

• Finally, let qα/2 and q1−α/2 be the α/2 and 1 − α/2 quantiles of θ̂∗1 − θ̂, ...θ̂∗B − θ̂ from which we define our

interval [θ̂ − q1−α/2, θ̂ − qα/2] = [2θ̂ − θ̂∗(1−α/2), 2θ̂ − θ̂∗(α/2)]

• Basic bootstrap accounts for bias better than the percentile Bootstrap
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Generalized Likelihood Ratio Test

• Suppose we have the parametric model f(x|θ) and a null parameter θ0 for n IID observations. We want to test
H0 : θ = θ0 vs H1 : θ 6= θ0

• We define the Generalized Likelihood Ratio Test (GLRT) to be the test that rejects H0 for small values

of Λ = lik(θ0)
maxθlik(θ0)

• This statistic is testing whether the likelihood of the MLE differs from the likelihood of our null parameter by
an amount greater than random chance

• GLRT can equivalently be rephrased to reject H0 for large values of −2logΛ = 2l(θ̂)− 2l(θ0)

• GLRT rejects at level α when 2logΛ ≥ χ2
k(α) where k is the dimension of the parameter space

• When we are dealing with multidimensional parameters we can further generalize the likelihood ratio test to
evaluate sub-models

• For H0 : θ ∈ Ω0 vs. H1 : θ 6∈ Ω0 we define Λ =
maxθ∈Ω0

lik(θ)

maxθ∈Ωlik(θ) where we reject using the χ2
k distribution.

However, unlike before, k is now the difference in dimensions between the full model Ω and the sub-model Ω0

Test of Independence

Dem Rep Independent
female 422 381 273
male 299 365 232

• We want to model each of the counts pij as multinomial with 1972 total observations where i = 1,2 and j =
1,2,3

• We also have the constraints that the sum across i and the sum across j are both equal to 1

• Our null hypothesis is that there is no association between gender and party affiliations. Alternatively, H0 :
pij = pi.p.j where pi. =

∑
j pij and p.j =

∑
i pij

• These constraints satisfiy a sub-model of a full multinomial model with 3 dimensions (5 variables and 2 equations
of constraint)

• Proceed with GLRT as normal

Pearson chi-squared test

• The Pearson chi-squared test is an alternative to the GLRT that is often used in multinomial testing problems

• Uses the test statistic X2 =

k∑
i=1

(Ni − Ei)2

Ei

• Has the same asympotiotic distribution as the GLRT

The Bradley-Terry Model

• Let βi represent the strength of team i

• We model the outcome of a game between teams i and j as a Bernoulli random variable with distribution
Bernoulli(pij) where we define βi − βj as the log odds of pij

• This yields the following equations: log
pij

1−pij = βi − βj and pij = eβi−βj

1+eβi−βj

• The strengths of each team is defined relatively so we can set one βi = 0 as a standard of comparison

• We can also encode a home team advantage by ensuring i is at home for every game (i,j) and including an
intercept α
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Generalized Linear Models

• Response values Yi, ..., Yn are modeled as independent observations drawn from Yi ∼ f(y|θi)

• For the ith response we have covariates xi1, ..., xip which are used to model θi by a link function, g, via
g(θi) = α+ β1xi1 + ...+ βpxip

• The cannonical link aims to have PDF/PMF of the form f(y|η) = eηy−A(η)h(y)
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Common Test Statistics

Test Hypotheses Test Statistic Distribution

One-sample
t-test

H0 : N(0, σ2)
H1 : N(µ, σ2), µ > 0

T =

√
nX̄

S
T ∼ tn

Sign Test H0 : f has median = 0
H1 : f has median > 0

S =

n∑
i=1

1{Xi > 0} S ∼ Binom(n, 1
2 )√

4n(Sn −
1
2 )→ N(0, 1)(large n)

Two-sample
t-test

N (µx, σ
2) vs. N(µy, σ

2)
H0 : µx = µy
H1 : µx > µy

T =
X̄ − Ȳ

Spooled

√
1
n + 1

m

T ∼ tm+n−2

Welch’s unequal
variance Test

N (µx, σ
2
x) vs. N(µy, σ

2
y)

H0 : µx = µy
H1 : µx > µy

Twelch =
X̄ − Ȳ√

1
nS

2
x + 1

mS
2
y

Similar to t distribution

Mann-Whitney-
Wilcoxon Test

H0 : f = g
H1 : f stochastically dominates g

1. Pool and rank X and
Y observations

2. Take note of the
ranks of Y and sum
their values

Central Limit Theorem

Fischer’s Exact
Test

Binom (n, p) vs. N(m, q)
H0 : p = q
H1 : p > q

NA1, number of successes
in first Binom

Hypergeometric for NA1

Common Distributions

Bernoulli Random Variables

• Takes 0 or 1 with probability (1-p) and p respectively

• p(x) = px(1− p)1−x for x = 0 and 1

• Can serve as an indicator variable

• Mean: p

• Variance: p(1− p)

Binomial Distribution

• n trials with a fixed probability of p for each trials

• Models the number of successes, X, in n trials

• p(k) =
(
n
k

)
pk(1− p)n−k

• Generalized as a multinomial distribution for multiple outcomes
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Geometric and Negative Binomial Distributions

• Geoemtric distribution is an infinite sequence of Bernoullii trials (Run repeated trials until the first success)

• p(k) = (1− p)k−1p

• Negative Binomial distribution is a generalization of the geometric distribution for r successes

• p(k) =
(
k−1
r−1

)
pr(1− p)k−r

Hypergeometric Distribution

• Consider a total of n balls with r black balls and n-r white ones. A hypergeometric distribution is the number
of black balls drawn when selecting m balls without replacement

• P (k) =
(rk)(

n−r
m−k)

(nm)

Poisson Distribution

• Limit of a binomial distribution as n→∞ and p→ 0 s.t. np = λ

• Poisson distribution with parameter λ: P (k) = λke−λ

k!

• p(x) = px(1− p)1−x for x = 0 and 1

• Can serve as an indicator variable

Uniform Random Variable

• Uniform distribution across an interval

• f(x) = frac1b− a for a ≤ x ≤ b

Exponential Density

• With parameter λ: f(x) = λe−λ for x ≥ 0

• F (x) = 1− e−λx

• Memoryless Property: probability that it will last t more time is independent of time elapsed

Gamma Density

• With parameters α and λ: g(t) = λα

Γ(α) t
α−1e−λt

• Γ(α) =
∫∞

0
ux−1e−udu for x > 0

• Gamma density with α = 1 is simply the exponential distribution

• α and λ are sometimes referred to as the shape and scale paramaters

• Mean: α
λ

• Variance: α
λ2

Normal Distribution

• For a mean, µ and standard deviation, σ :f(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2
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Beta Density

• f(u) = Γ(a+b)
Γ(a)Γ(b)u

a−1(1− u)b−1 for 0 ≤ u ≤ 1

• Useful for variables restricted to [0,1]

• a = b = 1 is the uniform distribution

Chi-squared Distribution

• Suppose X1, ...Xn
iid∼ N(0, 1), then the distribution of X2

1 + ...+X2
n is the chi-sqared distribution with n degrees

of freedom, χ2
n

15


	1.  Review of Probability Theory
	2.  
Hypothesis Testing
	3.  Parametric Models
	Common Test Statistics
	Common Distributions



