
Statistical Mechanics and Thermodynamics

Varun Varanasi

December 17, 2023

Contents

1 Introduction to Statistical Methods 3
1.1 Simple Random Walk and Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Statistical Descriptions of Systems of Particles 3
2.1 Basic Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Probability Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Thermal Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Mechanical Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Quasistatic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Exact and Inexact Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Statistical Thermodynamics 5
3.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Heat Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Quasistatic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Thermodynamic Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Macroscopic Parameters and their measurement 7
4.1 Heat Capcity and Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Extensive and Intensive Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Simple Applications of Macroscopic Thermodynamics 8
5.1 Ideal Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.1.1 Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1.2 Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1.3 Adiabatic Expansion and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2 Maxwell’s Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Free Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.4 Heat Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.4.1 Carnot Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.5 Refrigerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Basic Methods and Results of Statistical Mechanics 11
6.1 Ensembles Representative of Situations of Physical Interest . . . . . . . . . . . . . . . . . . . . . . . . 11

6.1.1 Isolated System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 System in Contact with Heat Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Simple Applications of the Canonical Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4 System with specified mean energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5 Calculation of Mean Values in a canonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.6 Connection with Thermodyanmics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.7 Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



6.8 Grand Canonical and Other Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.9 Alternative Derivation of Canonical Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Simple Applications of Statistical Mechanics 15
7.1 Partition Functions and their properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Calculation of Thermodynamic Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 Gibbs Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.4 Validity of Classical Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.5 Equipartition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.6 Simple Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7.6.1 Mean Kinetic Energy of a Molecule in a Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.6.2 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.6.3 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.7 Specific Heat of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.8 Paramagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.9 Maxwell Velocity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.10 Related Velocity Distributions and Mean Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.11 Number of molecules striking a surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.12 Effusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.13 Pressure and Momentum Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Equilibrium between phases or Chemical Species 18
8.1 Isolated System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.2 System in contact with a reservoir at constant temperature . . . . . . . . . . . . . . . . . . . . . . . . 18
8.3 System in contact with a reservoir at constant temperature and pressure . . . . . . . . . . . . . . . . . 18
8.4 Stability Conditions for Homogenous substance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Quantum Statistics of Ideal Gases 18
9.1 Identical Particles and Symmetry Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.2 Formulation of the Statistical Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.3 The Quantum Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.4 Maxwell-Boltzmann Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.5 Photon Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.6 Bose-Einstien Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.7 Fermi-Dirac Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.8 Quantum Statistics in the classical limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.9 Quantum States of a Single Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.10 Evaluation of the Parition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.11 Physical Implications of the quantum-mechanical enumeration of states . . . . . . . . . . . . . . . . . 22
9.12 Partition Functions of Polyatomic Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.13 Electromagnetic Radiation in thermal equilibrium inside an enclosure . . . . . . . . . . . . . . . . . . 23
9.14 Nature of Radiation inside aribitrary enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.15 Radiation emitted by a body at temperature T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.16 Consequences of Fermi-Dirac Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10 Sections Skipped 26

2



1 Introduction to Statistical Methods

1.1 Simple Random Walk and Binomial Distribution

In one dimension, the random walk can be seen as a particle moving a distance l to the left or right with probability
p and q(1 − p) respectively in each timestep. Note that we assume the direction of movement is independent of
previous decisions. After a total of N steps, the position of the particle is given by

x = ml −N ≤ m ≤ N

The general problem statement is to calculate PN (x) the probability that the particle is at location x after N
iterations. We can decompose m into the number of movements right n1 and the number of movements left n2 such
that m = n1 − n2. Next, notice that n1 + n2 = N , so we can express m = 2n1 −N as solely a function of n1.

For a given value m, we have a set n1 and n1. Since each movement is independent, we can calculate the
probability of achieving this value as pn1qn−1. However, before finalizing our answer, we must notice that there are(
N
n1

)
different ways to order these movements. Therefore, our final probability is given by:

WN (n1) =

(
N

n1

)
pn1qn2

PN (m) =

(
N

N−m
2

)
p

N+m
2 q

N−m
2

The probability expression presented above is the binomial distribution. The distriution has mean Np and vari-
ance Npq.

Majority of this section was skipped

2 Statistical Descriptions of Systems of Particles

2.1 Basic Postulate

In an isolated system conservation of energy tells us that the system is characterized by a singular energy. All states
accessible to our system must therefore have this energy. We say that the system is in equilibrium if the probability
of being in any given state is independent of time. Consequently, all macroscopic parameters describing the system
are also time-independent. Liouville’s Theorem from classical mechanics tells us that if the system is uniformly
distributed across these accessible states, then it will remain uniformly distributed across these states. With this in
mind, we come to our first postualte:

Postulate 1 The probability that n isolated system at equilibrium is uniformly distributed across all accessible states

Note that this postulate does not make any remarks on the time required to reach the state of equilibrium.

2.2 Probability Calculations

This schema lends itself to simple probability calculations. For a given energy bad [E,E+δE] we define the states in
this bad to be Ω(E). For another arbitrary parameter y, we denote the states with energy E and parameter y = yk
to be Ω(E, yk). The probability that our system takes value yk is simply given by:

P (yk) =
Ω(E, yk)

Ω(E)

Similar calculations can be applied to find the expected value and variance of the parameter y in our system.

ȳ =

∑
Ω(E, yk)yk
Ω(E)
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2.3 First Law of Thermodynamics

We define external parameters to be the independent parameters that specify a macroscopic system. Consider two
thermal systems that can interact and exchange energy.

2.3.1 Thermal Interaction

First, consider the case where all external parameters remain fixed. In this case, all energy transfer is done via
thermal interaction. We refer the mean energy transfered across these systems to be the heat.

Q = dĒ

Conservation of energy tells us that ∆E +∆E′ = 0 so we can conclude that the heat transfered for each system
is equal in magnitue and opposite in sign.

2.3.2 Mechanical Interaction

If two systems are thermally isolated, there can be no heat transfer. Instead, interactions between the systems occurs
via changes to their external parameters. We define the mean energy change due to these interactions to be work.

W = ∆xĒ

We can generalize these results a system with both mechanical and thermal interaction. In this case, we expect
energy transfer both work and heat.

∆Ē =W +Q

2.4 Quasistatic Processes

Consider a process in which the system remains arbitrarily close to equilibrium. In order to ensure these conditions
we require the process to move sufficiently slowly. Recall that we can think of energy in a given stat r as some
function of the external parameters:

Er = E(x1, ...xn)

For an infinitesimal change in the external parameters xa → xa + dxa we see that the energy change corresponds
to

dEr =
∑
i

∂E

∂xi
dxi

Work is therefore given by

dWr = −dEr =
∑
i

Xi,rdxi Xi,r = −∂Er

∂xi

We refer to each of these X terms as the generalized force. If the external parameter is varied quasistatically then
we have well-defined mean values for each of the corresponding generalized forces. Taking the appropriate average
over all equilibrium states,

dW =
∑

X̄idxi

2.5 Exact and Inexact Differentials

Exact differentials are characterized by the following:

dF = A(x, y)dx+B(x, y)dy A =
∂F

∂x
,B =

∂F

∂y

Exact differentials are path independent.
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∆F =

∫ f

i

dF =

∫ f

i

A(x, y)dx+B(x, y)dy

In our definition for the energy differential, we see that dE is exact since it is the difference of a well defined
quantity. On the other hand, work is an inexact differential since it is the process between going two states and is
necessarily path dependent. Consequently, Q also depends on the path taken.

If the system is thermally isolated, we have that Q = 0 and consequently dE = −dW and work is path indepen-
dent. This follows analogously for situations in which dW = 0.

3 Statistical Thermodynamics

Postulate 2 If some constriants of an isolated system are removed, the parameters of the system tend to readjust
themselves in a way such that Ω(y1, ..., yn) approaches a maximum

A irreversible process is one in which reintroducing a constraint after removing it does not cause the system to
return to its original state. Otherwise, the processs is said to be reversible. If the number of accessible states stays
the same after the removal of a constraint, we can consider the process to be reversible. If it increases, the process
is irreversible.

3.1 Entropy

Consider a composite system of 2 parts. The total energy of the system E can be broken down into components E1

and E2. Technically, we require an interaction term, but for the purpose of this argument we can assume that the
interaction term is inconsequential in the scale of each E.

E = E1 + E2

For a given energy E, we can describe our system solely in terms of E1 by expressing E2 = E − E1. Under this
notation, we have a set of total accessible states Ω(E1). The probability that our composite system has the first
portion with energy E1 is then proportional to this value.

P (E1) = CΩ(E1)

If the first system has energy E1 there are Ω1(E1) states with equal probability available to the system. Con-
sequently, there are Ω2(E − E1) states available to the second system. In total, we see that the system has
Ω(E1) = Ω1(E1)Ω2(E − E1) states accessible.

From our earlier discussion, we know that Ω1(E1) is rapidly increasing with E1 and consequently Ω2(E − E1) is
rapidly decreasing with E1. This behavior results in a sharp maximum for Ω(E1) and P (E1).

By introducing the quantity S = k lnΩ and the dimensionless paramater T, kT = ∂S
∂E , we can see that this

maximum P (E1) is obtained when S1 +S2 is maximized. Given our definition of T, this equivalent to the statement
that T1 = T2. In words, the maximum probability state is that which maximizex S, the entropy, which is equivalent
to the state in which both system have the same temperature.

3.2 Temperature

The above discussion yields two observations. First, if two systems are separately in equilibrium and have the same
parameter T, then when put in thermal contact, the systems will remain in equilibrium. Second, if two systems in
separate equilibrium are characterized by different temperature values, then when placed in thermal contact, the
systems will not remain in equilibrium.

The quantity kT can be thought of as an estimate of the mean energy per degree of freedom of the system.
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3.3 Heat Reservoir

Consider the thermal interaction between two systems with a large size difference. The larger system acts as a heat
reservoir with respect to the smaller system in that the temperature of the system does not change in response to
heat transfer from the smaller object. Heat reservoirs are relative to the object they interact with. Consider a taylor
expansion the number of accessible states at energy E given a heat transfer of Q into the system:

lnΩ′(E +Q) = lnΩ(E) +

(
∂ lnΩ(E)

∂E

)
Q+

1

2

(
∂2 lnΩ(E)

∂E2

)
Q2

With the heat reservoir assumption, we can assume that change in temperature is relatively small. Recalling our
relationship between temperature and entropy, we can kill all higher order terms.

lnΩ′(E +Q)− lnΩ(E) =
Q

kT

The resulting entropy change is simply δS = Q
T

3.4 Quasistatic Process

Consider a quasistatic process in which a system is changed from E to E + δE and xa to xa + δa. The change in
accessible states is given by:

d lnΩ =
∂ lnΩ

∂E
dE +

∑ ∂ lnΩ

∂xa
dxa

We can equivalently write this as

dQ = TdS = dE + dW dS =
dQ

T

Notice that this implies that in an adiabatic quasistatic process, we have that S = 0 regardless of external
parameter changes. Since the number of accessible states does not change, this means that the process is reversible.

3.5 Entropy

Entropy is an exact differential despite heat not being one. Entropy also becomes exceedingly small as energy and
temperature decrease.

3.6 Thermodynamic Laws

0th Law of Thermodynamics: If two systems are in thermal equilibrium with a third system, then they
must be in thermal equilibrium with eachother

1st Law of Thermodynamics: ∆E = −W +Q
2nd Law of Thermodynamics: In any process in which a thermally isolated sysem goes from one macrostate

to another, entropy cannot decrease.

∆S ≥ 0

If the system is not isolated undergoes a quasistatic process, then

dS =
dQ

T

This also implies the following relations:

dS =
dQ

T
=

1

T

(
dE +

∑
Xadxa

)
Basic Relation

dS =
∂S

∂E
dE +

∑ ∂S

∂xa
dxa S is exact

1

T
=
∂S

∂E

Xa

T
=

∂S

∂xa
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Below are a series of equivalent staements to the 2nd Law of Thermodynamics:

• Carnot’s Theorem: The basic relation holds for simple systems and in each infinitesimal quasistatic step
dQ = TdS

• Absolute Temperature: T is a temperature scale that abides by the 0th law of thermodynamics

• Entropy: S is entropy and it is the sum of its parts in a simple system

• Claussius Inequality: ∆STOT ≥ 0 for any thermally isolated system

• In any infinitesimal process in a simple system, TdS ≥ dQ and
∑
Jidxi ≤ dW (equality holds for quasistatic)

3rd Law of Thermodynamics: The entropy of a system has a limiting property that S → 0 as T → 0

4 Macroscopic Parameters and their measurement

4.1 Heat Capcity and Specific Heat

We define the heat capacity of a system as its temperature response to an infinitesimal heat transfer:

Cv =

(
∂Q

∂T

)
X

To make this quantity independent of the amount of matter in the system, we can scale it by the moles present
to find the specific heat of the system. This value is then comparable across systems and corrects for the size of the
system. Notice that this value is dependent on the external parameters present. In a simple system, we can consider
volume as our external parameter. Therefore, the macrostate can be defined by T and V. In this case, we have two
possibilites: constant volume and constant pressure. Since at constant volume dQ = dE and at constant pressure
dQ = dE + pdV , we see that for the same dQ, the constant pressure case results in a smaller change in internal
energy. Therefore, it requires more heat to produce the same temperature change as its constant volume counter
part.

cp > cv

From the second law of thermodynamics, we have that dS = dQ
T in a quasistatic process. Substituting this into

our heat capacity expression, we find

Cv = T

(
∂S

∂T

)
X

If we further restrict our external parameters, we can write dQ = dE

Cv = T

(
∂S

∂T

)
X

=

(
∂D

∂T

)
X

If we consider a quasistatic path between two states, we can find the entropy difference by integrating dQ
T

Sb − Sa =

∫ b

a

dQ

T

However, if we know the heat capacity, we can rewrite this expression as

Sb − Sa =

∫ b

a

dQ

T
=

∫ b

a

CvdT

T
= Cv ln

Tb
Ta

Note that we implicitly assume that Cv is independent of T.

4.2 Extensive and Intensive Parameters

Extensive parameters get doubled if the size of the system is doubled, while intensive parameters remain the same.
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5 Simple Applications of Macroscopic Thermodynamics

Recall from our earlier discussions the following equations:

dQ = dE + dW First Law of Thermodynamics

TdS = dE + pdV Second + First Laws of Thermodynamics

5.1 Ideal Gases

An ideal gas is dictated by the following equation:

pV = nRT

5.1.1 Internal Energy

One would expect the energy of an ideal gas to be a function of volume and temperature, E = E(T, V ).

dE =

(
∂E

∂T

)
V

dT +

(
∂E

∂V

)
T

dV

If we substitute in an expression for p into the basic relation provided by the 2nd law of thermodynamics, we
find the following equation:

TdS =
1

T
dE +

nR

V
dV

We can now plug in our expression for the energy differential into the equation above:

TdS =
1

T

(
∂E

∂T

)
V

dT +
[ 1
T

(
∂E

∂V

)
T

+
nR

V

]
dV

We can now exploit the fact that dS is exact. By defintion, we have

(
∂S

∂T

)
V

=
1

T

(
∂E

∂T

)
V(

∂S

∂V

)
T

=
[ 1
T

(
∂E

∂V

)
T

+
nR

V

]
Now, by the symmetry of second derivatives, we require the cross derivatives to be equivalent. Evaluating the

second derivatives results in
(
∂E
∂V

)
T
= 0

Thus, energy of an ideal gas is solely dependent on temperature T.

5.1.2 Specific Heat

Next, let’s consider the specific heat of an ideal gas at consant volume (dV = 0 → dQ = dE)

cv =
1

v

(
∂Q

∂T

)
V

=
1

v

(
∂E

∂T

)
V

As shown above, we know that E is only a function of T

dE =

(
∂E

∂T

)
V

dT

Putting the two together,

dE = vcvdT

At constant pressure, we reintroduce the pdV term. From the ideal gas law, we see that change in volume
corresponds to pdV = vEdT .
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dQ = vcvdT + vRdT

By definition,

cp =
1

v

(
∂Q

∂T

)
p

= cv +R

We define the ratio between specific heats

γ =
cp
cv

= 1 +
R

cv

If we apply microscopic calculations into the calculations, for a monoatomic ideal gas, we find the following:

E =
3

2
vRT

cv =
3

2
R

cp =
5

2
R

5.1.3 Adiabatic Expansion and Compression

Suppose a gas is allowed to expand isothermally. From the ideal gas law, we have that

pV = constant

However, under adiabatic expansion, we expect different results. In fact, we expect the gas to do work at the
expense of energy. Since we have an adiabatic process, we know that dQ = 0.

0 = vcvdT + pdV

We can use the ideal gas law to relate these differentials by considering pdV + V dp = vRdT Solving for and
plugging in dT into the equation above,

(cv +R)pdV + cvV dp = 0

γ
dV

V
+
dp

p
= 0

cv is independent of temperature, so we can integrate the above expression and find

pV γ = constant

Alternatively, we also get the following equations:

V γ−1T = constant p
1
γ T = constant

5.1.4 Entropy

For a quasistatic process, we can substitute dQ = TdS into the earlier expression.

TdS = vcvdT +
vRT

V
dV

We can simply integrate this expression to find the change in entropy between two states.
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5.2 Maxwell’s Relations

Begining with the basic relation
dE = TdS − pdV

we can derive Maxwell’s relations:

(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V(

∂T

∂p

)
S

=

(
∂V

∂S

)
p(

∂S

∂V

)
T

=

(
∂p

∂T

)
V(

∂S

∂p

)
T

= −
(
∂V

∂T

)
p

5.3 Free Expansion

Consider the free expansion of a gas in an adiabatic container. Since the expansion is without resistance dW = 0 and
since the process is adiabatic dQ = 0. Therefore, internal energy remains constant. For an ideal gas, since energy is
only dependent on temperature, we know that E1 = E2 so T1 = T2.

5.4 Heat Engines

A heat engine is a machine that can capture internal energy from a heat reservoir and produce macroscopic work.
To make the machine feasible, we require the process to end up in the same macrostate in which it begins. The
problem statement can also be phrased as extracting energy that is distributed across many degrees of freedom in a
heat reservoir into a single degree of freedom in the external parameter of an external device.

Unfortunately an engine that does so with perfect efficiency, that is w = q, is impossible. According to the second
law of thermodynamics, we require the total entropy change to increase in a cylce. Since we require the engine itself
to return to its original macrostate, we know that its entropy remains the same as it was initially. As stated in the
problem statement, the action of the heat engine does not increase the entropy of the outside device. However, the
entropy change of the heat reservoir is given by −q/T . In an ideal heat engine we have w = −q, so we see that
w/T ≤ 0. This does not produce positive work! Therefore, we see that it is impossible to produce a perfect heat
engine.

Heat engines can work if they are coupled with another heat reservoir in which entropy does increase. One way
of doing so is to introduce a reservoir at T2 < T1. This new heat engine takes in q1 from the first heat reservoir to
produce q2 to the second reservoir and some work w.

q1 = w + q2

The second law of thermodynamcis is satisfied if

∆S =
−q1
T1

+
q2
T2

≥ 0

Combining these equations we can introduce η the efficiency of our heat engine.

η =
w

q1
≤ T1 − T2

T1

Equality is only realized when the process is quasistatic.
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5.4.1 Carnot Engine

Carnot Engines are theoretical heat engines that operate quasistatically between two heat reservoirs. The cycle goes
through 4 macrostates (a,b,c,d)

1. a → b: Engine is thermally isolated and the external parameter is slowly tuned until the engine temperature
reaches T1. xa → xb T2 → T1

2. b→ c: Engine is put in thermal contact with reservoir at T1 and the external parameter is slowly tuned to xc
as temperature remains constant. xb → xc q1 into heat engine

3. c → d: Engine is thermally isolated and the external parameter is slowly tuned until the engine temperature
reaches T2. xc → xd T1 → T2

4. d→ a: Engine is put in thermal contact with reservoir at T2 and the external parameter is slowly tuned to xa
as temperature remains constant. xd → xa q2 into heat reservoir

5.5 Refrigerators

Refrigerators take heat from a lower temperature reservoir and reject it into a higher temperature reservoir.

w + q2 = q1

Since the Carnot cycle runs quasistatically, we can reverse it and effectively create a refrigerator.

∆S =
q1
T1

+
−q2
T2

≥ 0

6 Basic Methods and Results of Statistical Mechanics

6.1 Ensembles Representative of Situations of Physical Interest

6.1.1 Isolated System

The fundamental postulate of statistical mechanics postulates that any of the equilibrium states are equally probable.
Therefore, for an state with energy in the range E ≤ E ≤ E + δE, we can define the probability of being in state r
as

Pr =

{
C E ≤ Er ≤ E + δE

0 else

C is choosen such that the total probability across all accessible states sums to 1. This distribution is known as
the microcanonical ensemble.

6.2 System in Contact with Heat Reservoir

In this situation, instead of considering the energy of the system, we say that the energy of the system + reservoir
is fixed.

E0 = E′ + Er

If our system has an energy Er, then the energy of the reservoir is given by E′ = E0−Er. Therefore, if the system
has a single state r then the number of accessible states for the combined reservoir system is given by Ω(E0 − Er).
The probability of being in state r is consequently given by:

Pr = C ′Ω′(E0 − Er)

Typically, the system is much smaller than the reservoir and Er << E0. You can therefore approximate the
natural log as

11



lnΩ′(E0 − Er) = lnΩ′(E0)− ∂ lnΩ′

∂E′ Er

We represent the first derivative term

β =
∂ lnΩ′

∂E′

Note that this term is constant and independent of Er. This can be interpretted as the reservoir being so large
that its temperature is unaffected by interactions with the system in question. The equations above simplify into:

Ω′(E0 − Er) = Ω(E0)e−βEr

Pr = Ce−βEr

This exponential factor and associated distribution are known as the boltzmann factor and the canonical distri-
bution respectively.

6.3 Simple Applications of the Canonical Distribution

Paramagnetism

Consider an object with N0 magnetic atoms with magnetic moment µ in an external magnetic field H. We can
approach this system by considering a single atom with either parallel or antiparallel spin in a heat reservoir consisting
of the remaining atoms at temperature T . The magnetic energy corresponding to each of these states is given by
ϵ+ = −µH and ϵ− = µH. The corresponding probabilities are

P+ = CeBµH P− = Ce−BµH

The higher energy state (-) corresponds to a lower probability and thus the mean magnetic moment points in the
direction of H. The mean energy can be simply calculated:

µ̄H = µ tanh
µH

kT

Molecule in an Ideal Gas

Consider a monoatomic ideal gas in a box of volume V and absolute temperature T. Suppose that interactions
between molecules are insignificant and that the energy of the system is simply the energy of each molecule. We can
select a single molecule and consider the remainder of the gas as a heat reservoir at temperature T. The energy of
this particle is purely kinetic so we can represent it as:

E =
1

2

p2

m

We can capture the position and momentum of this particle by restricting the position of the particle between r
and r + dr and the momentum between p and p+ dp Under the canonical distriution the probability of finding the
particle in this phase space is proportional to the number of boxes in this phase space box.

P (r, p) d3r d3p ∝
(
d3rd3p

h30

)
e−βp2/2m

Notice that the probability is independent of position. Physically, this can be interpreted as the lack of positional
preference when no external forces are present. The probability of finding the particle in a certain momentum range is
then given by summing up the probabilities over all possible r values. This calculation can be equivalently calculated
for velocities to recover the maxwell distribution of molecular velocities.

P (v)d3v ∝ Ce−βmv2/2d3v
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Molecule in an Ideal Gas in the Presence of Gravity

Consider an analagous situation to above with the introduction of gravity.

E =
1

2

p2

m
+mgz

The probability of finding the particle at given position and momentum is no longer independent of the position.

P (r, p)d3r d3p ∝ d3r d3pe−βp2/2me−mgz

Since the exponential factors, we can simply integrate over the other variable and find the probability of finding
a particle at given momentum or height.

P (p) d3p = Ce−βp2/2md3p

P (z) d3z = C ′e−βmgd3z

6.4 System with specified mean energy

Consider the situation of a system with a fixed number of particles N in a given volume V, but the only available
information is the mean energy of the system: Ē. Suppose Er denotes the energy of a system in stte r. If we have a
such states,

1

a

∑
s

asEs = Ē

We can equivalently right this as
∑
asEs = aĒ. Notice that this statement is equivalent to having a total energy

of aĒ with an equal change of the system being in any state. If a system in the ensemble has energy Er then the
remainder of the system has energy aĒ−Er. This is an equivalent formulation to the canonical distribution of a heat
reservoir where instead of the reservoir is now the other systems in the ensemble rather than an external reservoir.

β = ∂ϕ(E′)
∂E′ does not have physical significant in this formulation. This beta can be calculated by the setting the

mean energy of this ensemble distribution to Ē. ∑
r e

−βErEr∑
r e

−βEr
= Ē

6.5 Calculation of Mean Values in a canonical ensemble

Consider the mean energy for the canoncial distribtion. By introduction a variable Z =
∑

r e
−βEr known as the

partition function, we can reexpress the mean energy as:

Ē = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β

With the distribution of system over possible energies we can easily calculate statistical quantitites:

∆E2 =
∂2 lnZ

∂β2

Consider a system characterized by a single external parameter x. If we have a quasistatic change of this parameter
by dx the energy of the system will respond by ∆xEr = ∂Er

∂x dx Work is correspondingly the change in mean energy
of the states:

dW =

∑
r e

−βEr
(
−∂Er

∂x dx
)∑

r e
−βEr

With the partition function we can rewrite this as

dW =
1

β

∂ lnZ

∂x
dx

In this formulation we can represent the mean generalized force as X̄ = 1
β

∂ lnZ
∂x If our external parameter is V we

can write our mean pressure as this generalized force.
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6.6 Connection with Thermodyanmics

Notice that we can represent all physically relevant quantities with the partition function. Let’s consider an infinites-
imal change in Z with respect to the parameters x and β:

d lnZ =
∂ lnZ

∂x
dx+

∂ lnZ

∂β
dβ

If we plug in the relations derived above, we can connect the partition function to mean energy and work.

d lnZ = βdW − Ēdβ

If we represent the dβ term as a change in Ē we can recover heat:

d lnZ = βdW − d(Ēβ) + βdĒ

d(lnZ + βĒ) = β(dW + dĒ) = βdQ

We see that this equality arises from the second law of thermodynamics. We can further define entropy using
dS = dQ

T

S = k(lnZ + βĒ)

As temperature approaches 0 we see that the only appreciable terms in the partition function are those corre-
sponding to the ground state energy.

Z → Ω0e
−βE0

Mean energy simply approaches E0 and the entropy approaches k lnΩ0.

If we consider two wealky interacting systems index by variables s and r, the partition function clearly factors.

Z0 =
∑
r,s

e−βE0

=
∑
r,s

e−β(Er+Es) =
∑
r

e−βEr

∑
s

e−βEs

Consequently we see that both energy and entropy are additive according to their relations to the partition func-
tion.

We can now apply expressess basic thermodynamic quantities based on cannoical probability by exploiting the
partition function derivations.

Pr =
e−βEr

Z
Canonical Probability

Ē =
∑
r

ErPr Mean Energy

dE =
∑
r

(ErdPr + PrdEr) Quasistatic Change in Energy

dW = −
∑
r

PrdEr Work

dQ =
∑
r

ErdPr Heat

S = −k
∑
r

Pr lnPr Entropy

6.7 Approximation Methods

6.8 Grand Canonical and Other Ensembles

The grand canonical distribution is concerned with systems with an indefinite number of particles. For example
consider a system in contact with a reservoir of both particles and heat.
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E0 = E + E′

N0 = N +N ′

The total energy and number of particles is held constant across both the reservoir and the system. We can
apply analagous reasoning as the canonical distribution and argue that if the system is in a defined state r, then the
number of accessible states for the joint system is just the number of states accessible to the reservoir.

Pr(Er, Nr) ∝ Ω′(E0 − Er, N
0 −Nr)

Using the same natural log expansion argument, we can write the grand canonical distribution

Pr ∝ eβEr−αNr β =
∂ lnΩ

∂E′ β =
∂ lnΩ

∂N ′

The new term corresponds to the chemical potential of the system µ = −kTα.

6.9 Alternative Derivation of Canonical Distribution

7 Simple Applications of Statistical Mechanics

7.1 Partition Functions and their properties

If an arbitrary constant is added to the energy term, the parition functions is modified by a e−βϵ0 term. In terms of
calculated thermodynamic quantities the mean energy is appropriately shifted while entropy and generalized forces
are unchanged. The partition function also factors into simple parts if the the system consists of distinct non-
interacting parts.

We can also classically formalize the partition function by splitting our phase space into cells of volume hf0 . The
partition function is then the sum of cells abiding by the volume and energy conditions and then summing over all
possible cells.

Z =

∫
eβE(q1,...qf )

dq1...dqf

hf0

7.2 Calculation of Thermodynamic Quantities

Consider a gas of N identical monoatomic gas particles with mass m in a volume V. The total energy of this gas is
given by

E =

N∑
i=1

p2i
2m

+ U(r1, ..., rN )

In a dilute gas we can set the interaction term to 0 U → 0. In the classical framework we can write our partition
function as

Zc =

∫
exp

[
− β

2m
([p21 + ...p2f ]) + U(r1, ...rf

]d3p1...d3pfd3N1...d
3Nf

h3N0

Evaluating the potential energy term is difficult, but when U = 0, the partition function can be written as

lnZc = N ln ζ ζ =
V

h3o

∫ ∞

−∞
e−β

p2

2m
d3p

ζ represents the partition function of a single molecule. We can solve for ζ = V
(

2πm
h2
0β

)3/2
. Consquently, the

partition function simplifies to

lnZc = N

(
lnV +

3

2
ln

(
2πm

h20

))
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We can use this form to write our other quanities:

p̄ =
N

βV

which recovers the ideal gas law!

Ē =
3

2
kTN

Cv =

(
∂Ē

∂T

)
V

=
3

2
Nk

The molar heat capacity is consequently cv = 3
2R.

7.3 Gibbs Paradox

The classical formulation mischaracterizes the indistinguishability of particles. In fact, the above partition function
does not yield the correctly addititive entropy expression. We can account for indistinguishability of the particles by
introducing a 1

N ! term in our partition function.

Z =
Zc

N !
=
ζN

N !

Our expression for entropy then takes the form:

S = kN

(
ln
V

N
+

3

2
lnT + σ0

)
σ0 =

3

2

(
2πmk

h20

)
+

5

2

7.4 Validity of Classical Approximation

The classical approximation is valid under: (
V

N

)1/3

>>
h√

3mkT

7.5 Equipartition Theorem

The energy of a system is a function of its coordinates and momentum. Often times the total energy can be split
additively in terms of a quadratic function of momentum. The mean value of this term ϵ̄i =

1
2kT . This statement is

only valid in classical statistical mechanics.

7.6 Simple Applications

7.6.1 Mean Kinetic Energy of a Molecule in a Gas

The kinetic energy of a molecule in a gas with mass m and momentum p is given by:

K = frac12m(p2x + p2y + p2z)

Since there are 3 quadratic terms the mean equilibrium energy is given by 3
2kT . The entire energy is simply

Ē = N · 3
2kT = 3

2RT . Molar specific heat capcity is consquently cv = 3
2R.

7.6.2 Brownian Motion

A macroscopicparticle immersed in a liquid. The mean velocity of the particle in the x direction must vanish by
symmetry. However, if we consider the a collection of particles, the equipartition theorem yields:

1

2
mv2x =

1

2
kT v̄x =

kT

m
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7.6.3 Harmonic Oscillator

A 1-D oscillator in thermal equilibrium by a heat reservoir has its energy described by the equation:

E =
1

2
k0x

2 +
p2

2m

Since each term is quadratic we can apply the equipartition theorem to each one and conclude that the average
energy Ē = K̄ + Ū = kT

Now let’s consider the quantum mechanics approach. Energy of the system for each state n = 1, 2, 3, ..

En = (n+
1

2
)ℏω

We write our partition function as

Z = e−
β
2 ℏω

∑
n=0

e−nβℏω = e−
β
2 ℏω (1 + e−βℏω + e−2βℏω + ...

)
This is simply a geometric series so we can write the partition function as

Z = e−
β
2 ℏω 1

1− e−βℏω

From the partition function we recover the mean energy:

Ē = ℏω
(
1

2
+

1

eβℏω − 1

)
At high temperatures this expression recovers the classical result. However, at low temperatures it approaches

the zero-point energy of the system.

7.7 Specific Heat of Solids

Consider a lattice of atoms with Na atoms per mole. We can write the energy of lattice vibrations as

E =

3Na∑
i

(
p2i
2m

+
1

2
kiq

2
i

)
Since each term is quadratic and independent we can immediately apply the equipartition theorem and find

Ē = 3NakT . This is only true at sufficiently high temperatures. At low temperatures, we can add the assumption
that each atom vibrates with the same angular frequency ω. Under this model we just get 3Na quantum harmonic
oscillators.

Ē = 3Naℏω
(
1

2
+

1

eβℏω − 1

)
Under this model as T approaches 0 the specific heat of solids exponentially approaches 0.

7.8 Paramagnetism

7.9 Maxwell Velocity Distribution

Consider a molecule of mass m in a dilute gas. We can represent the center of mass and momentum of each particle
as r and p respectively. Under the canonical distribution, the probability of finding the molecule in with center of
mass and momentum in the ranges specified is given by

Ps(r, p)d
3rd3p ∝ e−βp2/2me−βϵint

s d3rd3p

To recover the probability of finding the particle in the specified range independent of internal state, we simply
sum over all possible states. We can then drop the e−βϵint term as it becomes a constant of proportionality. With
this probabiltiy statement we can find the mean number of particles in the provided momentum and position range.
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We can now introduce a function that returns the mean number of molecules in the provided position and velocity
range.

f(r, v)d3rd3v = Ce−βmv2/2d3rd3v

If we integrate this expression over r and v we see that f is indepdent of r and thus returns the volume when
integrated over position. The toal integral over both r and v must return N, the total number of molecules.

CV

∫ ∞

−∞
eβmv2/2d3v = CV

(
2π

βm

)3/2

= N

The constant of proportionality is thus C = N
V

(
2π
βm

)3/2
We now have the distribution of velocities of particles.

f(r, v)d3rd3v =
N

V

(
2π

βm

)3/2

e−βmv2/2d3rd3v

7.10 Related Velocity Distributions and Mean Values

7.11 Number of molecules striking a surface

7.12 Effusion

7.13 Pressure and Momentum Transfer

8 Equilibrium between phases or Chemical Species

8.1 Isolated System

For a thermally isolated system, the stable equilibrium state is the state at which entropy is maximized.

8.2 System in contact with a reservoir at constant temperature

If a systems whose external parameters are fixed is in thermal contact with a heat reservoir, the stable equilibrium
condition is the state where helmholtz free eneregy is minimized.

8.3 System in contact with a reservoir at constant temperature and pressure

If a system is in contact with a reservoir at constant temperature and pressure and if its external parameters are
fixed so that it can only do work on the pressure reservoir, then the stable equilibrium is the state where gibbs free
energy is minimized.

8.4 Stability Conditions for Homogenous substance

9 Quantum Statistics of Ideal Gases

9.1 Identical Particles and Symmetry Requirements

Consider a gas of N identical particles in a container of volume V. Let Qi denote the coordinates of the ith particle
and si represent the possible quantum states for the ith particle. Therefore the entire state of the gas is given by
s1...sN . The corresponding wavefunction is given by ψ = ψ[s1,...,sN ](Q1, ..., QN ).

Maxwell-Boltzmann Statistics

This model does not impose any symmetry requirements on the wavefunction. Each particle is distinguistiable and
can occupy any state. Quantum mechanical models on the otherhand do impose symmetry on the wavefunction.
Physically, this implies that the state of the gas does not change if we swap two particles. Therefore, when we
introducing counting arguments it is essentially that the particles are indistringuishable.
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Bose-Einstein Statistics

Bose-einstein statistics refers to the case where each particle has an integer total angular momentum. This requires
that the wavefunction is symmetric. Particles that obey these statistics are known as bosons.

Fermi-Dirac Statistics

The second case refers to particles with half-integer spins. These particles are refered to as fermions and require
the wavefunction to be antisymmetric. Since the wavefunction must be antisymmetric we require the sign to change
when swapping two particles. However, if the particles were in the same state s, then the only way antisymmetry
is preserved is if the wavefunction vanishes. Therefore, fermions cannot occupy the same quantum state (Pauli-
exclusion principle)

For example, consider a system of two particles across 3 different energy levels:
Maxwell-Boltzmann

0 ϵ 3 ϵ
AB

AB
AB

A B
A B
B A

A B
B A

B A

Bose-Einstein
Since the particles are indistinguishable, we have a total of 6 states.

0 ϵ 3 ϵ
AA

AA
AA

A A
A A

A A

Fermi-Dirac
Since the particles are indistinguishable and cannot occupy the same state, we have a total of 3 states.

0 ϵ 3 ϵ
A A
A A

A A

9.2 Formulation of the Statistical Problem

For a gas of identical particles in a volume V in equilibrium at a temperature T we define the following parameters: r
is label of the possible states of a particle, ϵr is the energy corresponding to the state r, nr is the number of particles
in state r, and R is the state of the entire gas system. In this notation we can write the total energy of the gas as:

ER =
∑
r

nrϵr

If we know the total number of particles in the gas we can set
∑

r nr = N . Our partition function then takes the
form

Z =
∑
R

e−β(n1ϵ1+....)

The average number of particles in a state is then just
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n̄s =

∑
R nse

−β(n1ϵ1+....)

sumRe−β(n1ϵ1+....)
= − 1

β

∂ lnZ

∂ϵs

The dispersion is similarly

(∆ns)2 = − 1

β

∂n̄s
∂ϵs

How we sum over all states R is dependent on the statistical framework we use.

Maxwell-Boltzmann

In this case summing over R refers to summing over all possible numbers of particles in each state over all values
subject to the total

∑
nr = N restriction. We also consider each particle distinguishable so any permutation of

particles are considered distinct.

Bose-Einstein

This case is similar to maxwell-boltzmann statistics; however, now the particles are indistinguishable so we are only
concerned with the number of particles in each state. Photon statistics refers to the special case in which the number
of total particles is not constant.

Fermi-Dirac

Since particles cannot occupy the same state we sum nr = 0 or 1 for each r subject to any particle constraint.

9.3 The Quantum Distribution Functions

When T = 0 in the Bose-Einstein case we will find that all N particles will occupy the lowest energy state ϵ1.
However, in the case of Fermi-Dirac statistics, the particles will occupy the N lowest energy levels which results in a
considerably higher energy level than the BE counterpart.

Photon Statistics

Photon statistics refers to BE statistics with an unrestricted number of particles. The average number of particles
in each state is calculated as follows:

n̄s =

∑
ns
nse

−βnsϵs∑
ns
e−βnsϵs

= − 1

β

∂

∂ϵs
ln
(∑

e−βnsϵs
)

=
1

eβϵs − 1

The final form is refered to as the plank distribution.

Fermi-Dirac Statistics

Now we return to a fixed number of particles N. Skipping some derivations, we find the resulting distribution of the
form:

n̄s =
1

eα+βϵs + 1
α =

∂ lnZ

∂N

α = βµ so we can can equivalently be write the fermi-dirac distribution using the chemical potential:

n̄s =
1

eβ(ϵs−µ) + 1

20



Bose-Einstein Statistics

The results for BE statistics are very similar to FD.

n̄s =
1

eα+βϵs − 1
α =

∂ lnZ

∂N

n̄s =
1

eβ(ϵs−µ) − 1

9.4 Maxwell-Boltzmann Statistics

The partition function in the general case is

Z =
∑
R

e−β(n1ϵ1+n2ϵ2+...)

For N particles in split across n1, n2.... states we can count the number of states using combinatorics. The
partition function can then be written as

lnZ = N ln

(∑
r

e−βϵr

)
We can recover the maxwell-boltzmann distribution by differentiating with respect to the energy of the state:

n̄s = N
e−βϵs∑
r e

−βϵr

The dispersion takes the form:

(∆ns)2 = n̄s −
n̄2s
N

9.5 Photon Statistics

The partition function takes the form

lnZ = −
∑
r

ln(1− e=βϵr )

The corresponding plank distribution is

n̄s =
1

β

∂ lnZ

∂ϵs
=

1

e−βϵs − 1

The associated dispersion is

(∆ns)2 = n̄s(1 + n̄s)

9.6 Bose-Einstien Statistics

Skipping derivations the partition function simplifies to

lnZ = αN −
∑
r

ln(1− e−α−βϵr )

The corresponding distribution is

n̄s =
1

eα+βϵs − 1

The associated dispersion is

(∆ns)2 = n̄s(1 + n̄s)(1 +
1

β

∂α

∂ϵs
) ≈ n̄s(1 + n̄s)
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9.7 Fermi-Dirac Statistics

Skipping derivations the partition function simplifies to

lnZ = αN +
∑
r

ln(1 + e−α−βϵr )

The corresponding distribution is

n̄s =
1

eα+βϵs + 1

The associated dispersion is

(∆ns)2 = n̄s(1− n̄s)(1 +
1

β

∂α

∂ϵs
) ≈ n̄s(1− n̄s)

9.8 Quantum Statistics in the classical limit

In the classical limit, sufficiently low concentration or high temperature, both BE and FD statistics reduce to:

barnr = e−α−βϵr

Solving for α using the N particle constraint, we see that this statement is equivalent to the MB distribution.

9.9 Quantum States of a Single Particle

Consider a nonrelativistic particle of mass m, position r, and momentum p. If we apply boundary conditions and
results from quantum mechanics, we find the following energy levels:

ϵ =
2π2ℏ2

m

(
n2x
L2
x

+
n2y
L2
y

+
n2z
L2
z

)
Where from boundary conditions we have that ki =

2π
Li
ni for some integern ni.

The number of translational states between k and k + dk is given by ρd3k = V
2π2 k

2dk

9.10 Evaluation of the Parition Function

Under this scheme we find that the partition function for a single particle is given by

ζ =
V

h
(2πmkT )

3/2

These results are identical to the classical derivation with planks constant subbed into h0.

9.11 Physical Implications of the quantum-mechanical enumeration of states

Vapor Pressure of a Solid

At equilibrium µ1 = µ2, the chemical potential of the solid and the gas phases must be equal. Using the identity
µ = −kT ln ζ

N we can solve for the chemical potential of the vapor phase.

µ1 = −kT ln
(
(2πmkT )

3/2
)

For the solid, we calculate the chemical potential as follows:

µ2 =

(
∂F

∂N2

)
V2,T

= −kT
(
∂ lnZ

∂N2

)
V2,T

We can solve for the partition function of the solid by considering the mean energy expression.

Ē(T ) = kT 2

(
∂Z

∂T

)
V
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We can intregrate this expression to give:

lnZ(T ) =

∫ T

T0

Ē(T )

kT 2
dT + lnZ(T0)

Writing the mean energy as a function of specific heat and latent heat of vaporization and plugging in the T0 = 0
limit for the partition function,

lnZ(T ) =
N2η

kT
+N2

∫ T

0

dT

kT 2

∫ T

0

c(T )dT

The chemical potential is thus

µ2(T ) = −η − T

∫ T

0

dT

T 2

∫ T

0

c(T )dT

We can then solve for pressure by using the ideal gas law p1V1 = N1kT

9.12 Partition Functions of Polyatomic Molecules

9.13 Electromagnetic Radiation in thermal equilibrium inside an enclosure

Consider electromagnetic radiation in thermal equilibrium at temperature T in an enclosure of volume V. The electric
field of the collection of photons must obey the wave equation.

∇2E =
1

c2
∂2E
∂t2

This admits solutions of planewaves in the form E = E0eiωt where k = ω
c We can describe the relativistic energy

and momentum of a photon using ϵ = ℏomega and p = ℏk Next, let’s consider the mean number of photons in a
certain polarization direction with wavenumber between k and k + dk

f(k)d3k =
1

eβℏω − 1

d3k

(2π)3

Now, we can consider the mean energy density of system by summing the above expression for both polarization
directions and angular frequency values in the specified [ω, ω + dω] band

ū(ω, T )dω =
ℏ

π2c3
ω3dω

ebetaℏω − 1

If we introduce η = ℏω
kT we can write this in the more familiar

ū(ω, T )dω =
h

π2c3

(
kT

h

)4
η3dη

eη − 1

Wein’s displacement law follows immediately (for the frequency of maximum energy density at a given T):

ω̄1

T1
=
ω̄2

T2

The mean total energy is given by integrating over all angular frequencies (Stefan-Boltzmann Law):

u0(T )
π2

15

(kT )4

(ch)3
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Radiation Pressure

The mean pressure exerted by the enclosed photons is given by

p̄ =
∑
s

n̄s

(
−∂ϵs
∂V

)
Using the expansion ϵs = ℏc 2πL (N2

x + n2y + n2z)
1/2, we find that ∂ϵs

∂V = − 1
3
ϵs
V Radiation pressure is thus related to

mean energy density.

p̄ =
∑
s

n̄s
1

3

ϵs
V

=
1

3V
Ē =

1

3
ū0

9.14 Nature of Radiation inside aribitrary enclosure

9.15 Radiation emitted by a body at temperature T

A good emmiter of radiation is a good absorber of radiation and vice versa. Glossing over the derivations,

P(ω)dω = α(ω)[
1

4
cūωdω] = α(ω)

ℏ
4π2c2

ω3dω

eβℏω − 1

by integrating over all frequencies we can find the total power (Stefan-Boltzmann Law):

P 0 = α(σT )4 σ =
π2

60

k4

c2ℏ3

9.16 Consequences of Fermi-Dirac Distribution

Consider the Fermi-function:

F (ϵ) =
1

eβ(ϵ−µ) + 1

Figure 1: Fermi Function

We see that the transition region is on the order kT . As T approaches 0 the fermi function becomes a step
function. The fermi energy of a gas at T = 0 corresponds to the energy of the particles occupting the lowest kF
states. The fermi sphere thus has a radius V

(2π)3 (
4
3πk

2
F ). Since each electron can have two spin states there are a

total of 2 V
(2π)3 (

4
3πk

3
F ) states occupied.
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kF =

(
3π2N

V

)1/3

Energy is then given by

µ0 =
p2F
2m

=
ℏ2k2F
2m

=
ℏ2

2m

(
3π2N

V

)2/3
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