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1 Introduction

1.1 Mathematical Optimization

A generally mathematical optimization problem has the form

minimize f0(x)

s.t. fi(x) ≤ bi i = 1, ...m

with the following features:

• Optimization Variable: x ∈ Rn

• Objective Function: f0 : Rn → R

• Constraint Functions: fi : Rn → R

• Constraint Limits: bi

An optimal solution x∗ is one such that it obtains the smallest realization of the objective function for all
vectors that satisfy the constraints. Problems are classified according to the structure of the objective function and
constraints. Convex functions obey the following property:

fi(αx+ βy) ≤ αfi(x) + βfi(y) ∀x, y ∈ Rn α, β ∈ R, α+ β = 1

Since convexity is a more general statement then linearity, any linear program is a convex optimization problem.

1.2 Least-squares and Linear Programming

1.2.1 Least-squares problems

Least squares problems have no constraints and are optimizing a sum of squares.

minimize f0(x) = ||Ax− b|||22 =

k∑
i=1

(aTi x− bi)
2

where A ∈ Rk×n, x ∈ Rn.

The solution to the least squares problem is a solution to a series of linear equations:

(
AAT

)
x = AT b

x = (AAT )−1AT b

Computational solutions for these classes of problems are quite fast and accurate. Recognizing a problems is least
squares involves showing that the objective function is quadratic and the quadratic form is positive semi-definite.

1.2.2 Linear Programming

Linear programming refers to the set of problems with a linear objective function and linear constraints.

minimize cT (x)

s.t. aTi x ≤ bi i = 1, ...m

where c, ai ∈ Rn and bi ∈ R.

Linear programming problems do not have simple analytical solutions, but existing algorithms are quite reliable.
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1.3 Convex Optimization

Convex optimization problems take the form

minimize f0(x)

s.t. fi(x) ≤ bi i = 1, ...m

where f0, fi are all convex.

fi(αx+ βy) ≤ αfi(x) + βfi(y) ∀x, y ∈ Rn α, β ∈ R, α+ β = 1

Like linear programming, convex problems do not have a general solution. Current solutions involve inner-point
methods, but despite their reliability, these solutions are not as fleshed out as their counterparts in linear programming
and least-squares. The challenge of convex optimization is recognizing which problems are convex afterwhich the
machinary of technology can solve your problem.

1.4 Non-linear Optimization

Non-linear optimization is a general term for problems that do not fall into the earlier classifications. These problems
do not have simple solutions. Instead, you compromise on your solution to suite your needs. For example, local
optimization finds an optimal point among the feasible points around it. This method is fast and scalable, but comes
at the cost finding the actual optimal point and is highly reliant on initial parameters. Global optimization on the
other hand sacrifices efficiency to produce an optimal solution.

Convex optimization can assist in solving non-linear problems by using convex optimization to solve for the
initial point in the local optimization problem. This method involves solving a simpler convex problem and using
that solution as an initializing point for a local optimization solution on the original problem. Convex optimization
can also provide bounds for global optimization problems by relaxing constraints or solving dual problems.

2 Convex Sets

2.1 Affine and Convex Sets

2.1.1 Affine Sets

A set C is said to be affine if any line through two distinct points in C lies in C.

θx1 + (1− θ)x2 ∈ C ∀x1, x2 ∈ C, θ ∈ [0, 1]

Note that the line refers to the infinite line between points x1 and x2, not just the line segment. For multiple
points, we can refer to the affince combination θ1x1 + ...+ θkxk where

∑
θi = 1. An affine set containts every affine

combination of its points.

For an affine set C, consider x0 ∈ C. The set V defined as

V = C − x0 = {x− x0|x ∈ C}

is a subspace (closed under addition and scalar multiplication). We can therefore define an affine set as an offset
of a subspace:

C = V + x0 = {v + x0|v ∈ V }

Since V is independent of our choice of x0, we can think about the dimension of C as the dimension of V where
V = C − x0 for aribtrary x0 ∈ C.

The solution to a system of linear equations is an affine set. Conversely, any affine set can be represented as the
solution to a system of linear equations.
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For a set C ⊆ Rn, the affine hull of C is affine combination of all points in C.

Aff C =
{∑

i

θixi|xi ∈ C,
∑

θi = 1
}

The affine hull is the smallest affine set that contains C. Affine dimension is given by the dimension of its affine
hull.

2.1.2 Convex Sets

A set is convex if the line segment between any two points in C lies in C.

∀x, y ∈ C, 0 ≤ θ ≤ 1 θx+ (1− θ)y ∈ C

Conceptually, you can think of a convex set as the set of points such that each point can see eachother with a path
that lies in the set. Like an affine combination, a convex combination of the points x1...xk is the point θ1x1+...+θkxk

such that θ1 + ...+ θk where θi ≥ 0. A set is convex if and only if it contains every convex combination of points in
the set. Intuitively, this is akin to considering a weighted average of points in the set where the weights are given by
θi. This combination can be generalized to infinite points without issue.

A convex hull of a set C is the set of all convex combinations of points in C.

conv C =
{
θ1x1 + ...+ θkxk|xi ∈ C, θi ≥ 0,

∑
θi = 1

}
The convex hull is the smallest convex set that contains C.

2.1.3 Cones

A set C is called a cone or non-negative homogeneous if for every x ∈ C and θ ≥ 0, θx ∈ C. Sets can be both convex
and a cone in which case we refer to them as convex cones.

∀x1, x2 ∈ C, θ1, θ2 ≥ 0 θ1x1 + θ2x2 ∈ C

As with other sets, we can define a conic combination (nonnegative linear combination) as the combination
θ1x1 + ... + θkxk where θ1, ..., θk ≥ 0. If a point exist in a convex cone C, then every convex combination of that
point also exists in C. Conversely, a set is a a convex cone if and only if it contains all convex combinations of its
elements.

A conic hull, the conic combination of all points in C, is the smallest convex cone that contains a set C.{
θ1x1 + ...+ θkxk|xi ∈ C, θ1 ≥ 0

}
2.2 Important Examples

• The empty set ∅

• Singleton {x0}

• The whole space Rn

• Any line (affine hence convex) If it passes through 0 it is a subspace and thus a convex cone as well

• Line segement (convex but not affine)

• A ray (convex but not affine) If it’s base is 0 then it is a convex cone

• Any subspace is affine and a convex cone
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2.2.1 Hyperplanes and Halfspaces

A hyperplane is defined as the set

{x|aTx = b}

where a ∈ Rn and b ∈ R. Conceptually, it is equivalent to the solution set of linear equations for each component
of x (affine set!). Geometrically, it is the space with a constant inner product to a vector a or a hyperplane with
normal vector a and offset b.

Hyperplanes divide the space into two half-spaces. These spaces are convex but not affine.

{x|aTx ≤ b} or{x|aT (x− x0) ≤ 0, aTx0 = b} closed halfspace

2.2.2 Euclidean Balls and Ellipsoids

A euclidean ball in Rn has the form:

B(xc, r) = {x|||x− xc||2 ≤ r} = {x|(x− xc)
T (x− xc) ≤ r}

The euclidean ball represents the space of all points with a radius r of the center point xc. You can use the
homogeniety and triangle inquality of norms to show that the euclidean ball is convex.

Ellipsoids are a similar family of sets that take the form:

E = {x|(x− xc)
TP−1(x− xc) ≤ 1}

where P is a positive definite matrix and xc is the center of ellipsoid. The lengths of the semi-axis of E are given
by the eigenvalues of P

√
λi. An ellipsoid is a generalization of the ball where P = r2I.

2.2.3 Norm Balls and Norm Cones

For a given norm on Rn, the norm ball defined as {x|||x − xc|| ≤ r} is convex. The norm cone, the set C =
{(x, t)|||x|| ≤ t} ⊆ Rn+1 is a convex cone.

2.2.4 Polyhedra

Polyhedron are the solution set for a finite set of linear equalities and inequalities.

P = {x|aTj x ≤ bj , c
T
i x = di}

Alternatively, a polyhedron can be understood as the intersection of a finite number of halfspaces and hyper-
planes. Polyhedra are convex.

For a set of affinely independent (linearly independent with additional condition that the weights add to 1) points,
we define a simplex to be the set

C = conv{v0, ..., vk} = {θ0v0 + ...+ θkvk|θ ⪰ 0,1T θ = 1}

The affine dimension of this simplex is k and is sometimes referred to as k-dimensional simplex. One dimensional
simplex is a line, 2-d simplex is a triangle, 3-d simplex is a tetrahedron. Simplex can be understood as a polyhedron
by redefining it as a series of linear equalities and inequalities.

2.2.5 The positive semidefinite cone

Let Sn denote the space of symmetric matricies. Similarly, Sn
+ denotes the set of symmetric positive semidefinite

matricies and Sn
++ is the set of symmetric positive definite matricies. The set Sn

+ is a cone since

xT (θ1A+ θ2B)x = θ1x
TAx+ θ2x

TBx ≥ 0

where A,B ∈ Sn
+ and θ1, θ2 ≥ 0
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2.3 Operations that Preserve Convexity

• Intersections: S1 ∩ S2

• Affine Functions

– f(S) = {f(x) : x ∈ S} where S is convex and f is affine

– f−1(S) = {x : f(x) ∈ S} where S is convex and f is affine

• Scaling: αS = {αx : x ∈ S}

• Translation: S + a = {x+ a : x ∈ S}

• Projection: T = {x1 ∈ Rm|(x1, x2) ∈ S, x2 inRn}

• Summation: S1 + S2 = {x+ y|x ∈ S1, y ∈ S2}

• Cartesian Product: S1 × S2 = {(x1, x2) : x1 ∈ S1, x2 ∈ S2}

• Partial Sum: S = {(x, y1 + y2) : (x, y1) ∈ S1, (x, y2) ∈ S2}

2.4 Seperating and Supporting Hyperplanes

Theorem 2.1 (Seperating Hyperplane Theorem) Suppose C and D are nonempty disjoint convex sets. Then
there exists a ̸= 0 and b such that aTx ≤ b for all x ∈ C and aTx ≥ b for all x ∈ D.

This hyperplane {aTx = b} is said to be the seperating hyperplane for sets C and D.

Proof in Boyd 2.5

Converse of the seperating hyperplane theorem is not necessarily true.

Definition 1 (Supporting Hyperplane) Suppose C ⊆ Rn and x0 is a point on the boundary of C.

x0 ∈ bd C = cl C\int C

If a ̸= 0 satisfies aTx ≤ aTx0 for all x ∈ C, then the hyperplane {x|aTx = aTx0} is called the supporting hyperplane
to C at point x0.

Geometrically, you can interpret the supporting hyperplane as tangent to the set C at point x0.

Theorem 2.2 (Supporting Hyperplane Theorem) For any nonempty convex set C and any x0 ∈ bd C, there
exists a supporting hyperplane to C at x0

If a set is closed, has a nonempty interior, and has a supporting hyperplane at everypoint in its boundary, then
it is convex.

3 Convex Functions

3.1 Basic Properties and Examples

A function f : Rn → R is convex if dom f is a convex set and if for all x, y ∈ dom f and 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

The geometric interpretation of this definition is that the chord between (x, f(x)) and (y, f(y)) lies above the
curve f . A function is said to be strictly convex is the inequality is strict for all x ̸= y. A concave function is one
where −f is convex. Strictness is given by the same inequality conditions.

By definition affine functions will always meet the equality. Therefore, affine functions are both convex and
concave and any function that is both convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that intersects its domain. This is
useful tool in determining the convexity of a function by simply restricting it to a line.
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3.1.1 Extended-value Extensions

It is helpful to extend a convex function to all of Rn by setting its value to ∞ outside of its domain.

f̃(x) =

{
f(x) x ∈ dom f

∞ x /∈ dom f

Defining the extension allows us to smoothly operate on all x instead of the domain of f.

3.1.2 First Order Conditions

Suppose f is differentiable (∇f exists at each point on the domain). Then f is convex if and only if domain f is
convex and for all x,y

f(y) ≥ f(x) +∇f(x)T (y − x)

Proof in Boyd 3.1.3

The right hand side is simply the first order taylor approximation of f(y) near x. The first order taylor ap-
proximation is a global underestimator of the function. If the first order taylor approximation is always a global
underestimator of the function, then the function is convex. This inequality also states that if ∇f(x) = 0, then x is
a global minimizer of the function.

Equality is dropped when considering strict convexity. Similarly, the inequality is flipped for concavity.

3.1.3 Second Order Conditions

Now assume that f is twice differentiable. f is convex if and only if dom f is convex and the hessian is positive
semidefinite.

∇2f(x) ⪰ 0 ∀x ∈ dom f

This condition corresponds to the graph of the function having an upward curvature at x.

Concavity is represented by the same conditions, but the Hessian must obey ∇2f(x) ⪯ 0. Strict convexity is
given by ∇2f(x) ≻ 0, but the converse is not true.

3.1.4 Examples

Proofs in Boyd 3.1.5

• Exponential: eax is convex on R

• Powers: xa is convex on R++ when a ≥ 1 or a ≤ 0

• Powers of absolute value: |x|p for p ≥ 1

• Logarithm: log x

• Negative Entropy: x log x

• Norms

• Max Function

• Quadratic-over-linear function: x2

y

• Log-sum-exp: log(ex1 + ...+ exn)

• Geometric Mean

• Log-determinant:
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3.1.5 Sublevel Sets

The α-sublevel set of a function f : Rn → R is defined as

Cα = {x ∈ dom f |f(x) ≤ α}

Sublevel sets of a convex function are convex sets. However, the converse is not true. Despite all of a function’s
sublevel sets being convex the function does not necessarily have to be convex. Sublebel property is a useful way of
establishing a set as convex. Specifically, by identifying a set as a sublevel set of a convex function, we can determine
that the set is convex.

3.1.6 Epigraph

The epigraph of a function f : Rn → R is defined as

epi f = {(x, t)|x ∈ dom f, f(x) ≤ t}

A function is convex if and only if its epigraph is convex. A function is concave if and only if its hypograph
({(x, t)|t ≤ f(x)}) is convex.

3.1.7 Jensen’s Inequality and Extensions

f(θ1x1 + ...+ θkxk) ≤ θ1f(x1) + ...+ θkf(xk)

3.2 Operations that Preserve Convexity

Proofs in Boyd 3.2

• Nonnegative Weighted Sum: f̃ = w1f1 + ...+ wmfm for m nonnegative weights and convex functions

• Composition with Affine Mapping: g(x) = f(Ax+ b), if f is convex (or concave) so is g

• Pointwise Maximum: f(x) = max{f1(x), f2(x)}

• Pointwise Supremum: g(x) = supy∈A f(x, y) where f(x, y) is convex in x for each y ∈ A

• Composition: Consider f(x) = h(g(x))

– f is convex if h is convex and nondecreasing and g is convex

– f is convex if h is convex and nondecreasing and g is concave

– f is concave if h is concave and nondecreasing and g is concave

– f is concave if h is concave and nondecreasing and g is convex

– Note that the above relations generalize for vector composition

• Minimization: g(x) = infy∈C f(x, y) for f convex and C convex

• Perspective: g(x, t) = tf(xt ) if f is convex

4 Convex Optimization Problems

4.1 Optimization Problems

Recall the general form of an optimization problem:

minimize f0(x)

s.t. fi(x) ≤ 0 i = 1, ...m

hi(x) = 0 i = 1, ...p

with the following features:
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• Optimization Variable: x ∈ Rn

• Objective Function: f0 : Rn → R

• Inequality Constraints: fi : Rn → R

• Equality Constraints: hi : Rn → R

Domain

The domain of an optimization problem is the set of points for which the objective function and constraits are
defined.

D =

m⋂
i=0

dom fi ∩
p⋂

i=1

dom hi

Feasible Set

A feasible point is one that obeys the constraints and a problem is said to be feasible if the domain contains at least
one point. The set of fesabile points is called the feasible set or the constraint set. The optimal value for a problem
p∗ is defined as:

p∗ = inf{f0(x)|fi(x) ≤ 0, hi(x) = 0}

If the problem is infeasible, we have p∗ = ∞ (inf of an empty set is ∞). If a problem has feasible points xk such
that f(xk) → −∞ as k → ∞, the we say the problem is unbounded below and p∗ = −∞.

Optimal Point

An optimal point is one that satisfies the optimal value for a problem f(x∗) = p∗.

Xopt = {x|f(x) = p∗, fi(x) ≤ 0, hi(x) = 0}

A problem is said to be solvable if Xopt is non-empty.

A feasible solution that is obeys f0(x) ≤ p∗ + ϵ is said to be ϵ-sub optimal and all feasible points satisfying this
condition constitute the ϵ-sub optimal set.

The point x is said to be locally optimal if there is an R > 0 such that

f0(x) = inf{f0(z)|fi(z) ≤ 0, hi(z) = 0, ||z − x||2 ≤ R}

This is equivalent to solving the original optimization problem with an additional norm constraint.

Constraints are said to be active at x if the inequality is saturated (ie. fi(x) = 0). A redundant constraint is one
that can be removed without impacting the problem.

Feasibility Problems

If we set the objective function to 0 the outcome is either 0 if the feasible set is non-empty or ∞ if the feasible set
is empty.

find x

s.t. fi(x) ≤ 0 i = 1, ...m

hi(x) = 0 i = 1, ...p

9



4.2 Convex Optimization

A convex optimization problem takes the form

minimize f0(x)

s.t. fi(x) ≤ 0 i = 1, ...m

aTx = bi i = 1, ...p

where f0, ..., fm are all convex functions and the equality constraint is affine. It is clear that the feasible set of a
convex optimization problem is convex since it is the intersection of convex sets. Therefore, convex optimization is
simply minimization over a convex set.

4.2.1 Local and Global Optima

In convex optimization, any locally optimal point is also globally optimal.

4.2.2 Optimality Criterion

For a differentiable function f0, a point x ∈ X the feasile set is optimal if and only if

∇f0(x)
T (y − x) ≥ 0 ∀y ∈ X

Conceptually, you can think of this as the diference between y and x in the first order taylor approximation of y.

If the problem is unconstrained, the necessary and sufficient condition reduces to ∇f0(x) = 0.

If the problem only has equivalence constraints, the feasible set is affine. If the function is non-negative, you can
represent its optimality condition as

∇f0(x) +AT v = 0

4.3 Linear Optimization Problems

A linear program is an optimization problem with affine constraints and an affine objective.

minimize cTx+ d

s.t. G(x) ⪯ h

Ax = b

These are a subclass of convex optimization problems. The standard form of linear programming only contains
component wise nonnegativity constraints

minimize cTx

s.t. x ⪰ 0

Ax = b

If there are no equality constraints, we refer to the problem as an inequality form linear program with constraint
Ax ⪯ b.

10



4.3.1 Linear Fractional Programming

This class of problems refers to problems involving the minimization of the ratio of affine functions over a polyhedron.

minimize f0(x)

s.t. G(x) ⪯ h

Ax = b

f0(x) =
cTx+ d

eTx+ f

Note that the objective function is quasiconvex. If the feasible set is non-empty, the problem can be rewritten as
a linear program:

minimize cT y + dz

s.t. Gy − hz ⪯ 0

Ay − bz = 0

eT y + fz = 1

z ≥ 0

4.4 Quadratic Optimization Problems

5 Sections Skipped

• Relative interior of affine sets (Boyd 2.1.3)

• Simplex as polyhedron argument (Boyd 2.2.4)

• Convex hull description of polyhedra (Boyd 2.2.4)

• Linear-fractional and perspective functions (Boyd 2.3.3)

• Generalized Inequalities (Boyd 2.4)

• Dual Cones and generalized inequalities (Boyd 2.6)

• Representation as pointwise supremum of affine functions (Boyd 3.2.3)

• Equivalent Problems and Equivalent Convex Problems (Boyd 4.1.3 + Boyd 4.2.4)

• Quasiconvex Optimization (Boyd 4.2.5)
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